boot_nlme {nlraa} | R Documentation |
Bootstraping for generalized nonlinear models and nonlinear mixed models
Description
Bootstraping tools for nonlinear models using a consistent interface
bootstrap function for objects of class gnls
Usage
boot_nlme(
object,
f = NULL,
R = 999,
psim = 1,
cores = 1L,
data = NULL,
verbose = TRUE,
...
)
boot_gnls(
object,
f = NULL,
R = 999,
psim = 1,
cores = 1L,
data = NULL,
verbose = TRUE,
...
)
Arguments
object |
|
f |
function to be applied (and bootstrapped), default coef (gnls) or fixef (nlme) |
R |
number of bootstrap samples, default 999 |
psim |
simulation level for vector of fixed parameters either for |
cores |
number of cores to use for parallel computation |
data |
optional data argument (useful/needed when data are not in an available environment). |
verbose |
logical (default TRUE) whether to print a message if model does not converge. |
... |
additional arguments to be passed to function |
Details
This function is inspired by Boot
, which does not
seem to work with 'gnls' or 'nlme' objects. This function makes multiple copies
of the original data, so it can be very hungry in terms of memory use, but
I do not believe this to be a big problem given the models we typically fit.
Examples
require(car)
require(nlme)
data(barley, package = "nlraa")
barley2 <- subset(barley, year < 1974)
fit.lp.gnls2 <- gnls(yield ~ SSlinp(NF, a, b, xs), data = barley2)
barley2$year.f <- as.factor(barley2$year)
cfs <- coef(fit.lp.gnls2)
fit.lp.gnls3 <- update(fit.lp.gnls2,
params = list(a + b + xs ~ year.f),
start = c(cfs[1], 0, 0, 0,
cfs[2], 0, 0, 0,
cfs[3], 0, 0, 0))
## This will take a few seconds
fit.lp.gnls.Bt3 <- boot_nlme(fit.lp.gnls3, R = 300)
confint(fit.lp.gnls.Bt3, type = "perc")