getSummary {nlpsem} | R Documentation |
Summarize Model Fit Statistics for Fitted Models
Description
This function summarizes the model fit statistics for a list of fitted models. The summary includes the number of parameters, estimated likelihood (-2ll), AIC, BIC, and other relevant statistics.
Usage
getSummary(model_list, HetModels = FALSE)
Arguments
model_list |
A list of fitted mxModel objects. Specifically, each element of the list should be the |
HetModels |
A logical flag indicating whether a mixture model or a multiple group model is included in the list.
If set to |
Value
A data frame summarizing model fit statistics (number of parameters, estimated likelihood, AIC, BIC, etc.) for each model.
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Fit bilinear spline growth model with fix knot
## Single group model
BLS_LGCM1 <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, res_scale = 0.1
)
getSummary(model_list = list(BLS_LGCM1@mxOutput), HetModels = FALSE)
## Mixture model with two latent classes
set.seed(20191029)
BLS_LGCM2 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.45, 0.55), sub_Model = "LGCM", cluster_TIC = NULL,
y_var = "M", t_var = "T", records = 1:9, curveFun = "BLS", intrinsic = FALSE,
res_scale = list(0.3, 0.3), growth_TIC = NULL, tries = 10
)
## Mixture model with three latent classes
set.seed(20191029)
BLS_LGCM3 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM", cluster_TIC = NULL,
y_var = "M", t_var = "T", records = 1:9, curveFun = "BLS", intrinsic = FALSE,
res_scale = list(0.3, 0.3, 0.3), growth_TIC = NULL, tries = 10
)
getSummary(model_list = list(BLS_LGCM1@mxOutput, BLS_LGCM2@mxOutput, BLS_LGCM3@mxOutput),
HetModels = TRUE)