getEstimateStats {nlpsem} | R Documentation |
Calculate p-Values and Confidence Intervals of Parameters for a Fitted Model
Description
This function calculates p-values and confidence intervals (CIs) of parameters for a given model.It supports different types of CIs, including Wald CIs, likelihood-based CIs, bootstrap CIs, or all three.
Usage
getEstimateStats(
model = NULL,
est_in,
p_values = TRUE,
CI = TRUE,
CI_type = "Wald",
rep = NA,
conf.level = 0.95
)
Arguments
model |
A fitted mxModel object. Specifically, this should be the |
est_in |
The |
p_values |
A logical flag indicating whether to calculate p-values. Default is |
CI |
A logical flag indicating whether to compute confidence intervals. Default is |
CI_type |
A string specifying the type of confidence interval to compute. Supported options include
|
rep |
An integer specifying the number of replications for bootstrap. This is applicable if |
conf.level |
A numeric value representing the confidence level for confidence interval calculation. Default is
|
Value
An object of class StatsOutput
with potential slots:
-
wald
: Contains a data frame with, point estimates, standard errors p-values, and Wald confidence intervals (when specified). -
likelihood
: Contains a data frame with likelihood-based confidence intervals (when specified). -
bootstrap
: Contains a data frame with bootstrap confidence intervals (when specified).
The content of these slots can be printed using the printTable()
method for S4 objects.
References
-
Casella, G. & Berger, R.L. (2002). Statistical Inference (2nd ed.). Duxbury Press.
-
Madansky, A. (1965). Approximate Confidence Limits for the Reliability of Series and Parallel Systems. Technometrics, 7(4), 495-503. Taylor & Francis, Ltd. https://www.jstor.org/stable/1266390
-
Matthews, D. E. (1988). Likelihood-Based Confidence Intervals for Functions of Many Parameters. Biometrika, 75(1), 139-144. Oxford University Press. https://www.jstor.org/stable/2336444
-
Efron, B. & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC press.
Examples
mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Standardized time-invariant covariates
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# Fit bilinear spline latent growth curve model (fixed knots)
paraBLS_LGCM.r <- c(
"mueta0", "mueta1", "mueta2", "knot",
paste0("psi", c("00", "01", "02", "11", "12", "22")),
"residuals"
)
BLS_LGCM_r <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, res_scale = 0.1, paramOut = TRUE, names = paraBLS_LGCM.r)
## Generate P value and Wald confidence intervals
getEstimateStats(
est_in = BLS_LGCM_r@Estimates, CI_type = "Wald"
)
# Fit bilinear spline latent growth curve model (random knots) with time-invariant covariates for
# mathematics development
## Define parameter names
paraBLS.TIC_LGCM.f <- c(
"alpha0", "alpha1", "alpha2", "alphag",
paste0("psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), "residuals",
paste0("beta1", c(0:2, "g")), paste0("beta2", c(0:2, "g")), paste0("mux", 1:2),
paste0("phi", c("11", "12", "22")), "mueta0", "mueta1", "mueta2", "mu_knot"
)
## Fit the model
BLS_LGCM.TIC_f <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = TRUE, records = 1:9,
growth_TIC = c("ex1", "ex2"), res_scale = 0.1, paramOut = TRUE, names = paraBLS.TIC_LGCM.f
)
## Change optimizer to "SLSQP" for getting likelihood-based confidence interval
mxOption(model = NULL, key = "Default optimizer", "SLSQP", reset = FALSE)
## Generate P value and all three types of confidence intervals
getEstimateStats(
model = BLS_LGCM.TIC_f@mxOutput, est_in = BLS_LGCM.TIC_f@Estimates, CI_type = "all", rep = 1000
)