marginalVoidProbNumIntegration {nimbleSCR} | R Documentation |
Marginal void probability
Description
Calculate the marginal void probability using the midpoint integration method.
Usage
marginalVoidProbNumIntegration(
quadNodes,
quadWeights,
numNodes,
lowerCoords,
upperCoords,
sd,
baseIntensities,
habIntensities,
sumHabIntensity,
numObsWindows,
numHabWindows
)
Arguments
quadNodes |
Three-dimensional array of nodes for midpoint integration. The dimension sizes are equal to the number of nodes per habitat window (1st), 2 (2nd), and the number of habitat windows (3rd). |
quadWeights |
Vector of weights for midpoint integration. |
numNodes |
Vector of numbers of nodes for all habitat windows. |
lowerCoords , upperCoords |
Matrix of lower and upper x- and y-coordinates of all detection windows. One row for each window. |
sd |
Standard deviation of the isotropic multivariate normal distribution. |
baseIntensities |
Vector of baseline detection intensities for all detection windows. |
habIntensities |
Vector of habitat intensities for all habitat windows. |
sumHabIntensity |
Total habitat selection intensity over all windows. |
numObsWindows |
Number of detection windows. |
numHabWindows |
Number of habitat windows. |
Value
The marginal void probability.
Author(s)
Wei Zhang
References
W. Zhang, J. D. Chipperfield, J. B. Illian, P. Dupont, C. Milleret, P. de Valpine and R. Bischof. 2020. A hierarchical point process model for spatial capture-recapture data. bioRxiv. DOI 10.1101/2020.10.06.325035
Examples
lowerHabCoords <- matrix(c(0, 0, 0, 1), nrow = 2, byrow = TRUE)
upperHabCoords <- matrix(c(2, 1, 2, 2), nrow = 2, byrow = TRUE)
lowerObsCoords <- matrix(c(0, 0, 1, 0, 0, 1, 1, 1), nrow = 4, byrow = TRUE)
upperObsCoords <- matrix(c(1, 1, 2, 1, 1, 2, 2, 2), nrow = 4, byrow = TRUE)
nodesRes <- getMidPointNodes(lowerHabCoords, upperHabCoords, 10)
quadNodes <- nodesRes$quadNodes
quadWeights <- nodesRes$quadWeights
numNodes <- rep(100, 2)
sd <- 0.1
baseDetIntensities <- c(1:4)
habIntensities <- c(1:2)
sumHabIntensity <- sum(habIntensities * c(2, 2))
numObsWindows <- 4
numHabWindows <- 2
marginalVoidProbNumIntegration(quadNodes, quadWeights, numNodes,
lowerObsCoords, upperObsCoords, sd,
baseDetIntensities, habIntensities,
sumHabIntensity, numObsWindows, numHabWindows)