dpoisppDetection_normal {nimbleSCR} | R Documentation |
Poisson point process detection model
Description
Density and random generation functions of the Poisson point process for detection.
The dpoisppDetection_normal
distribution is a NIMBLE custom distribution which can be used to model and simulate
Poisson observations (x) of a single individual in continuous space over a set of detection windows defined by their upper and lower
coordinates (lowerCoords,upperCoords). The distribution assumes that an individual’s detection intensity
follows an isotropic bivariate normal function centered on the individual's activity center (s) with standard deviation (sd).
All coordinates (s and trapCoords) should be scaled to the habitat (scaleCoordsToHabitatGrid
).
Usage
dpoisppDetection_normal(
x,
lowerCoords,
upperCoords,
s,
sd,
baseIntensities,
numMaxPoints,
numWindows,
indicator,
log = 0
)
rpoisppDetection_normal(
n,
lowerCoords,
upperCoords,
s,
sd,
baseIntensities,
numMaxPoints,
numWindows,
indicator
)
Arguments
x |
Array containing the total number of detections (x[1,1]), the x- and y-coordinates (x[2:(x[1,1]+1),1:2]), and the corresponding detection window indices (x[2:(x[1,1]+1),3]) for a set of spatial points (detection locations). |
lowerCoords , upperCoords |
Matrices of lower and upper x- and y-coordinates of all detection windows scaled to the habitat (see ( |
s |
Vector of x- and y-coordinates of the isotropic multivariate normal distribution mean (the AC location). |
sd |
Standard deviation of the isotropic multivariate normal distribution. |
baseIntensities |
Vector of baseline detection intensities for all detection windows. |
numMaxPoints |
Maximum number of points. This value (non-negative integer) is only used when simulating detections to constrain the maximum number of detections. |
numWindows |
Number of detection windows. This value (positive integer) is used to truncate |
indicator |
Binary argument specifying whether the individual is available for detection (indicator = 1) or not (indicator = 0). |
log |
Logical argument, specifying whether to return the log-probability of the distribution. |
n |
Integer specifying the number of realisations to generate. Only n = 1 is supported. |
Value
dpoisppDetection_normal
gives the (log) probability density of the observation matrix x
.
rpoisppDetection_normal
gives coordinates of a set of randomly generated spatial points.
Author(s)
Wei Zhang
References
W. Zhang, J. D. Chipperfield, J. B. Illian, P. Dupont, C. Milleret, P. de Valpine and R. Bischof. 2020. A hierarchical point process model for spatial capture-recapture data. bioRxiv. DOI 10.1101/2020.10.06.325035
Examples
coordsHabitatGridCenter <- matrix(c(0.5, 3.5,
1.5, 3.5,
2.5, 3.5,
3.5, 3.5,
0.5, 2.5,
1.5, 2.5,
2.5, 2.5,
3.5, 2.5,
0.5, 1.5,
1.5, 1.5,
2.5, 1.5,
3.5, 1.5,
0.5, 0.5,
1.5, 0.5,
2.5, 0.5,
3.5, 0.5), ncol = 2,byrow = TRUE)
colnames(coordsHabitatGridCenter) <- c("x","y")
# Create observation windows
lowerCoords <- matrix(c(0, 0, 1, 0, 0, 1, 1, 1), nrow = 4, byrow = TRUE)
upperCoords <- matrix(c(1, 1, 2, 1, 1, 2, 2, 2), nrow = 4, byrow = TRUE)
colnames(lowerCoords) <- colnames(upperCoords) <- c("x","y")
# Rescale coordinates
ScaledLowerCoords <- scaleCoordsToHabitatGrid(coordsData = lowerCoords,
coordsHabitatGridCenter = coordsHabitatGridCenter)
ScaledUpperCoords <- scaleCoordsToHabitatGrid(coordsData = upperCoords,
coordsHabitatGridCenter = coordsHabitatGridCenter)
ScaledUpperCoords$coordsDataScaled[,2] <- ScaledUpperCoords$coordsDataScaled[,2] + 1.5
ScaledLowerCoords$coordsDataScaled[,2] <- ScaledLowerCoords$coordsDataScaled[,2] - 1.5
# Detection locations
x <- matrix(c(1.5, 2, 1.1, 1.5,0.6, 2.1, 0.5, 2, 1, 1.5), nrow = 5, byrow = TRUE)
# get the window indeces on the third dimension of x
windowIndexes <- 0
for(i in 1:nrow(x)){
windowIndexes[i] <- getWindowIndex(curCoords = x[i,],
lowerCoords = ScaledLowerCoords$coordsDataScaled,
upperCoords = ScaledUpperCoords$coordsDataScaled)
}
x <- cbind(x, windowIndexes)
# get the total number of detections on x[1,1]
x <- rbind(c(length(windowIndexes),0,0) ,x )
s <- c(1, 1)
sd <- 0.1
baseIntensities <- c(1:4)
windowIndices <- c(1, 2, 2, 3, 4)
numPoints <- 5
numWindows <- 4
indicator <- 1
dpoisppDetection_normal(x, lowerCoords, upperCoords, s, sd, baseIntensities,
numMaxPoints = dim(x)[1] , numWindows, indicator, log = TRUE)