niw.post {nicheROVER} | R Documentation |
Random draws from the posterior distribution with Normal-Inverse-Wishart (NIW) prior.
Description
Given iid d
-dimensional niche indicators X = (X_1,\ldots,X_N)
with X_i \sim N(\mu, \Sigma)
, this function generates random draws from p(\mu,\Sigma | X)
for the Normal-Inverse-Wishart (NIW) prior.
Usage
niw.post(nsamples, X, lambda, kappa, Psi, nu)
Arguments
nsamples |
The number of posterior draws. |
X |
A data matrix with observations along the rows. |
lambda |
Location parameter. See 'Details'. |
kappa |
Scale parameter. Defaults to |
Psi |
Scale matrix. Defaults to |
nu |
Degrees of freedom. Defaults to |
Details
The NIW distribution p(\mu, \Sigma | \lambda, \kappa, \Psi, \nu)
is defined as
\Sigma \sim W^{-1}(\Psi, \nu), \quad \mu | \Sigma \sim N(\lambda, \Sigma/\kappa).
The default value kappa = 0
uses the Lebesque prior on \mu
: p(\mu) \propto 1
.
The default value Psi = 0
uses the scale-invariant prior on \Sigma
: p(\Sigma) \propto |\Sigma|^{-(\nu+d+1)/2}
.
The default value nu = ncol(X)+1
for kappa = 0
and Psi = 0
makes E[\mu|X]=\code{colMeans(X)}
and E[\Sigma | X]=\code{var(X)}
.
Value
Returns a list with elements mu
and Sigma
of sizes c(nsamples, length(lambda))
and c(dim(Psi), nsamples)
.
See Also
Examples
# compare the default non-informative prior to an arbitrary informative prior
# for simulated data
# simulate normal data with mean and variance (mu0, Sigma0)
d <- 4
mu0 <- rnorm(d)
Sigma0 <- matrix(rnorm(d^2), d, d)
Sigma0 <- Sigma0 %*% t(Sigma0)
N <- 1e2
X <- matrix(rnorm(N*d), N, d) # iid N(0,1)
X <- t(t(X %*% chol(Sigma0)) + mu0) # each row is N(mu0, Sigma)
# informative prior parameters
lambda <- rnorm(d)
kappa <- 20
Psi <- crossprod(matrix(rnorm(d^2), d, d))
nu <- 5
# iid draws from informative prior pi(mu, Sigma)
nsamples <- 2e3
siw0 <- rniw(nsamples, lambda, kappa, Psi, nu)
# iid draws from posterior p(mu, Sigma | X) with informative prior
siw1 <- niw.post(nsamples, X, lambda, kappa, Psi, nu)
# iid draws from posterior p(mu, Sigma | X) with default noninformative prior
siw2 <- niw.post(nsamples, X)
# compare
# prior and posterior densities of mu
clrs <- c("orange", "red", "blue", "black")
ii <- 1
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(list(siw0, siw1, siw2), col = clrs[1:3],
plot.index = ii, ylab = "Density")
abline(v = mu0[ii], col = clrs[4]) # true value of mu
legend(x = "topright",
legend = c(parse(text = paste0("pi(mu[", ii, "])")),
parse(text = paste0("p(mu[", ii, "]*\" | \"*X)*\", Informative Prior\"")),
parse(text = paste0("p(mu[", ii, "]*\" | \"*X)*\", Noninformative Prior\"")),
parse(text = paste0("\"True value of \"*mu[", ii, "]"))),
fill = clrs)
# prior and posterior densities of Sigma
ii <- 1
jj <- 2
par(mar = c(4.2, 4.2, 2, 1)+.1)
niche.par.plot(list(siw0, siw1, siw2), col = clrs[1:3],
plot.index = c(ii,jj), ylab = "Density")
abline(v = Sigma0[ii,jj], col = clrs[4])
legend(x = "topright",
legend = c(parse(text = paste0("pi(Sigma[", ii, "*", jj, "])")),
parse(text = paste0("p(Sigma[", ii, "*", jj,
"]*\" | \"*X)*\", Informative Prior\"")),
parse(text = paste0("p(Sigma[", ii, "*", jj,
"]*\" | \"*X)*\", Noninformative Prior\"")),
parse(text = paste0("\"True value of \"*Sigma[", ii, "*", jj, "]"))),
fill = clrs)