preprocess_modality_t1 {neuronorm} | R Documentation |
Preprocess T1-weighted MRI scan for one patient
Description
This function preprocesses a raw T1-w MRI scan and generates a segmentation MRI scan using the FAST algorithm. The preprocesising steps comprises imhomogeneity correction 'N4', registration to the MNI152 template with isotropic voxel size of 1mm^3 using the 'SyN' transformation, and skull stripping.
Usage
preprocess_modality_t1(
mri.patient,
folder.patient,
atlas,
mask,
inhomogeneity = "N4",
transformation = "SyN"
)
Arguments
mri.patient |
path of the T1-weighted scan. |
folder.patient |
folder containing the T1-weighted scan. This folder usually refers to the patient. |
atlas |
atlas template in NifTI format to spatially register the T1-weighted scans. By default the MNI152 atlas template is used. |
mask |
brain mask in NifTI format of the atlas template to performed the skull stripping. |
inhomogeneity |
inhomogeneity correction algorithm to be applied. The correction by default is the 'N4' bias correction. |
transformation |
non-linear transformation for registering the T1-w MRI scan to the reference template. 'SyN' transformation is used by default. |
Value
paths of preprocessed MRI scans.
Author(s)
David Payares
References
Nicholas J. Tustison, Brian B. Avants, Philip A. Cook, Yuanjie Zheng, Alexander Egan, Paul A. Yushkevich, and James C. Gee. N4ITK: Improved N3 Bias Correction. IEEE Trans Med Imaging, 29:1310–1320, 2010.
B. B. Avants, C. L. Epstein, M Grossman, J. C. Gee Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12:1310–1320, 2008.
Evans, A.C., Fox, P.T., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, D.L., Thompson, P., MacDonald, D., Iacoboni, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. London B Biol, 356:1293-1322, 2001.
Yongyue Zhang, J. Michael Brady, Stephen Smith Hidden Markov random field model for segmentation of brain MR image. Medical Imaging 2000: Image Processing, 2000.
Jean-Philippe Fortin, Elizabeth M Sweeney, John Muschelli, Ciprian M Crainiceanu, Russell T Shinohara, Alzheimer’s Disease Neuroimaging Initiative, et al. Removing inter-subject technical variability in magnetic resonance imaging studies. NeuroImage, 132:198–212, 2016.
Examples
## Not run:
# Get general folder
folder <- system.file("extdata", package = "neurodata")
# Get covariates
covariates <- system.file("covariates.txt", package = "neurodata")
# Read covariates information
clinical_info <- read.csv(file = covariates, sep = ';')
# Folder and T1-weighted file of the patient
patient_folder <- file.path(folder,"patient01")
patient_T1 <- file.path(patient_folder,"patient01_T1.nii.gz")
# Getting preferred atlas template and template mask
# Using the MNI152 template available in the MNITemplate package
library(MNITemplate)
atlas <- getMNIPath()
atlas_mask <- readMNI("Brain_Mask")
# Preprocessing the patient's sequences
patient_preprocessed_mri <- preprocess_modality_t1(mri.patient = patient_T1,
folder.patient = patient_folder,
atlas = atlas, mask = atlas_mask,
inhomogeneity = 'N4',
transformation = 'SyN')
## End(Not run)