netpairwise {netmeta} | R Documentation |
Conduct pairwise meta-analyses for all comparisons with direct evidence in a network meta-analysis
Description
Conduct pairwise meta-analyses for all comparisons with direct evidence in a network meta-analysis.
Usage
netpairwise(
x,
separate = FALSE,
common = x$common,
random = x$random,
level = x$level,
level.ma = x$level.ma,
prediction = x$prediction,
level.predict = x$level.predict,
reference.group = if (missing(order)) x$reference.group else "",
baseline.reference = x$baseline.reference,
method.tau = x$method.tau,
order = NULL,
sep.trts = x$sep.trts,
nchar.trts = x$nchar.trts,
backtransf = x$backtransf,
warn.deprecated = gs("warn.deprecated"),
...
)
## S3 method for class 'netpairwise'
print(x, ...)
## S3 method for class 'netpairwise'
summary(object, ...)
## S3 method for class 'summary.netpairwise'
print(x, ...)
## S3 method for class 'netpairwise'
forest(x, ...)
## S3 method for class 'netpairwise'
plot(x, ...)
## S3 method for class 'netpairwise'
funnel(x, k.min = 3, ...)
## S3 method for class 'netpairwise'
radial(x, k.min = 3, ...)
## S3 method for class 'netpairwise'
baujat(x, k.min = 3, ...)
## S3 method for class 'netpairwise'
metabias(x, k.min = 10, ...)
## S3 method for class 'metabias.netpairwise'
print(x, ...)
## S3 method for class 'netpairwise'
trimfill(x, k.min = 3, ...)
## S3 method for class 'trimfill.netpairwise'
print(x, ...)
## S3 method for class 'netpairwise'
metainf(x, k.min = 2, ...)
## S3 method for class 'metainf.netpairwise'
print(x, ...)
## S3 method for class 'netpairwise'
metacum(x, k.min = 2, ...)
## S3 method for class 'metacum.netpairwise'
print(x, ...)
## S3 method for class 'netpairwise'
metareg(x, ..., k.min = 2)
## S3 method for class 'metareg.netpairwise'
print(x, ...)
Arguments
x |
An object of class |
separate |
A logical indicating whether results for pairwise comparisons should be printed as separate meta-analyses or as subgroups which is more concise. |
common |
A logical indicating whether a common effects network meta-analysis should be conducted. |
random |
A logical indicating whether a random effects network meta-analysis should be conducted. |
level |
The level used to calculate confidence intervals for individual comparisons. |
level.ma |
The level used to calculate confidence intervals for pooled estimates. |
prediction |
A logical indicating whether prediction intervals should be printed. |
level.predict |
The level used to calculate prediction intervals for a new study. |
reference.group |
Reference treatment. |
baseline.reference |
A logical indicating whether results
should be expressed as comparisons of other treatments versus the
reference treatment (default) or vice versa. This argument is
only considered if |
method.tau |
A character string indicating which method is
used to estimate the between-study variance |
order |
An optional character or numerical vector specifying the order of treatments. |
sep.trts |
A character used in comparison names as separator between treatment labels. |
nchar.trts |
A numeric defining the minimum number of characters used to create unique treatment names (see Details). |
backtransf |
A logical indicating whether results should be
back transformed in printouts and forest plots. If
|
warn.deprecated |
A logical indicating whether warnings should be printed if deprecated arguments are used. |
... |
Additional arguments (passed on to |
object |
An object of class |
k.min |
Minimum number of studies in pairwise comparison to show funnel plot, radial plot or conduct test for funnel plot asymmetry. |
Details
Conduct pairwise meta-analyses for all comparisons with direct
evidence in a network meta-analysis. In contrast to
netmeta
and netsplit
, unadjusted
standard errors are used in the calculations and the between-study
heterogeneity variance is allowed to differ between comparisons.
The R function metagen
is called internally.
Value
Either a single metagen
object with pairwise
comparisons as subgroups or a list with metagen
objects for each direct pairwise comparison.
Note
This function must not be confused with pairwise
which can be used as a pre-processing step to convert data from
arm-based to contrast-based format by calculating all pairwise
comparisons within a study.
Author(s)
Guido Schwarzer guido.schwarzer@uniklinik-freiburg.de
See Also
Examples
oldsets <- settings.meta(digits = 2, digits.tau2 = 2, digits.tau = 2)
data(smokingcessation)
# Transform data from arm-based format to contrast-based format
#
p1 <- pairwise(list(treat1, treat2, treat3),
event = list(event1, event2, event3), n = list(n1, n2, n3),
data = smokingcessation, sm = "OR")
# Conduct random effects network meta-analysis
#
net1 <- netmeta(p1, common = FALSE)
# Calculate and print concise results for all pairwise
# meta-analyses
#
np1 <- netpairwise(net1)
np1
print(np1, details.method = FALSE)
## Not run:
data(Senn2013)
# Random effects model
#
net2 <- netmeta(TE, seTE, treat1.long, treat2.long, studlab,
data = Senn2013, sm = "MD", common = FALSE, reference = "plac")
# Calculate and print concise results for all pairwise
# meta-analyses
#
np2 <- netpairwise(net2)
np2
print(np2, details.method = FALSE)
forest(np2)
# Print detailed information for each pairwise comparison
#
np3 <- netpairwise(net2, separate = TRUE)
forest(np3)
funnel(np3)
radial(np3)
funnel(np3, k.min = 1)
## End(Not run)
settings.meta(oldsets)