vertex_covariate_dist {netdiffuseR} | R Documentation |
Computes covariate distance between connected vertices
Description
Computes covariate distance between connected vertices
Usage
vertex_covariate_dist(graph, X, p = 2)
vertex_mahalanobis_dist(graph, X, S)
Arguments
graph |
A square matrix of size |
X |
A numeric matrix of size |
p |
Numeric scalar. Norm to compute |
S |
Square matrix of size |
Details
Faster than dist
, these functions compute distance metrics
between pairs of vertices that are connected (otherwise skip).
The function vertex_covariate_dist
is the simil of dist
and returns p-norms (Minkowski distance). It is implemented as follows (for
each pair of vertices):
In the case of mahalanobis distance, for each pair of vertex , the
distance is computed as follows:
Value
A matrix of size of class
dgCMatrix
. Will
be symmetric only if graph
is symmetric.
Author(s)
George G. Vega Yon
References
Mahalanobis distance. (2016, September 27). In Wikipedia, The Free Encyclopedia. Retrieved 20:31, September 27, 2016, from https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=741488252
See Also
mahalanobis
in the stats package.
Other statistics:
bass
,
classify_adopters()
,
cumulative_adopt_count()
,
dgr()
,
ego_variance()
,
exposure()
,
hazard_rate()
,
infection()
,
moran()
,
struct_equiv()
,
threshold()
Other dyadic-level comparison functions:
matrix_compare()
,
vertex_covariate_compare()
Examples
# Distance (aka p norm) -----------------------------------------------------
set.seed(123)
G <- rgraph_ws(20, 4, .1)
X <- matrix(runif(40), ncol=2)
vertex_covariate_dist(G, X)[1:5, 1:5]
# Mahalanobis distance ------------------------------------------------------
S <- var(X)
M <- vertex_mahalanobis_dist(G, X, S)
# Example with diffnet objects ----------------------------------------------
data(medInnovationsDiffNet)
X <- cbind(
medInnovationsDiffNet[["proage"]],
medInnovationsDiffNet[["attend"]]
)
S <- var(X, na.rm=TRUE)
ans <- vertex_mahalanobis_dist(medInnovationsDiffNet, X, S)