threshold {netdiffuseR} | R Documentation |
Retrive threshold levels from the exposure matrix
Description
Thresholds are each vertexes exposure at the time of adoption.
Substantively it is the proportion of adopters required for each ego to adopt. (see exposure
).
Usage
threshold(
obj,
toa,
t0 = min(toa, na.rm = TRUE),
include_censored = FALSE,
lags = 0L,
...
)
Arguments
obj |
Either a |
toa |
Integer vector. Indicating the time of adoption of the innovation. |
t0 |
Integer scalar. See |
include_censored |
Logical scalar. When |
lags |
Integer scalar. Number of lags to consider when computing thresholds. |
... |
Further arguments to be passed to |
Details
By default exposure is not computed for vertices adopting at the
first time period, include_censored=FALSE
, as estimating threshold for
left censored data may yield biased outcomes.
Value
A vector of size n
indicating the threshold for each node.
Author(s)
George G. Vega Yon & Thomas W. Valente
See Also
Threshold can be visualized using plot_threshold
Other statistics:
bass
,
classify_adopters()
,
cumulative_adopt_count()
,
dgr()
,
ego_variance()
,
exposure()
,
hazard_rate()
,
infection()
,
moran()
,
struct_equiv()
,
vertex_covariate_dist()
Examples
# Generating a random graph with random Times of Adoption
set.seed(783)
toa <- sample.int(4, 5, TRUE)
graph <- rgraph_er(n=5, t=max(toa) - min(toa) + 1)
# Computing exposure using Structural Equivalnece
adopt <- toa_mat(toa)
se <- struct_equiv(graph)
se <- lapply(se, function(x) methods::as((x$SE)^(-1), "dgCMatrix"))
expo <- exposure(graph, adopt$cumadopt, alt.graph=se)
# Retrieving threshold
threshold(expo, toa)
# We can do the same by creating a diffnet object
diffnet <- as_diffnet(graph, toa)
threshold(diffnet, alt.graph=se)