ego_variance {netdiffuseR}R Documentation

Computes variance of YY at ego level

Description

Computes variance of YY at ego level

Usage

ego_variance(graph, Y, funname, all = FALSE)

Arguments

graph

A matrix of size n×nn\times n of class dgCMatrix.

Y

A numeric vector of length nn.

funname

Character scalar. Comparison to make (see vertex_covariate_compare).

all

Logical scalar. When FALSE (default) fif_i is mean at ego level. Otherwise is fix for all i (see details).

Details

For each vertex ii the variance is computed as follows

(jaij)1jaij[f(yi,yj)fi]2% (\sum_j a_{ij})^{-1}\sum_j a_{ij} \left[f(y_i,y_j) - f_i\right]^2

Where aija_{ij} is the ij-th element of graph, ff is the function specified in funname, and, if all=FALSE fi=jaijf(yi,yj)2/jaijf_i = \sum_j a_{ij}f(y_i,y_j)^2/\sum_ja_{ij}, otherwise fi=fj=1n2i,jf(yi,yj)f_i = f_j = \frac{1}{n^2}\sum_{i,j}f(y_i,y_j)

This is an auxiliary function for struct_test. The idea is to compute an adjusted measure of disimilarity between vertices, so the closest in terms of ff is ii to its neighbors, the smaller the relative variance.

Value

A numeric vector of length nn.

See Also

struct_test

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()


[Package netdiffuseR version 1.22.6 Index]