diffnet-arithmetic {netdiffuseR} | R Documentation |
diffnet
Arithmetic and Logical Operators
Description
Addition, subtraction, network power of diffnet and logical operators such as
&
and |
as objects
Usage
## S3 method for class 'diffnet'
x ^ y
graph_power(x, y, valued = getOption("diffnet.valued", FALSE))
## S3 method for class 'diffnet'
y / x
## S3 method for class 'diffnet'
x - y
## S3 method for class 'diffnet'
x * y
## S3 method for class 'diffnet'
x & y
## S3 method for class 'diffnet'
x | y
Arguments
x |
A |
y |
Integer scalar. Power of the network |
valued |
Logical scalar. When FALSE all non-zero entries of the adjacency matrices are set to one. |
Details
Using binary operators, ease data management process with diffnet.
By default the binary operator ^
assumes that the graph is valued,
hence the power is computed using a weighted edges. Otherwise, if more control
is needed, the user can use graph_power
instead.
Value
A diffnet class object
See Also
Other diffnet methods:
%*%()
,
as.array.diffnet()
,
c.diffnet()
,
diffnet-class
,
diffnet_index
,
plot.diffnet()
,
summary.diffnet()
Examples
# Computing two-steps away threshold with the Brazilian farmers data --------
data(brfarmersDiffNet)
expo1 <- threshold(brfarmersDiffNet)
expo2 <- threshold(brfarmersDiffNet^2)
# Computing correlation
cor(expo1,expo2)
# Drawing a qqplot
qqplot(expo1, expo2)
# Working with inverse ------------------------------------------------------
brf2_step <- brfarmersDiffNet^2
brf2_step <- 1/brf2_step
# Removing the first 3 vertex of medInnovationsDiffnet ----------------------
data(medInnovationsDiffNet)
# Using a diffnet object
first3Diffnet <- medInnovationsDiffNet[1:3,,]
medInnovationsDiffNet - first3Diffnet
# Using indexes
medInnovationsDiffNet - 1:3
# Using ids
medInnovationsDiffNet - as.character(1001:1003)
[Package netdiffuseR version 1.22.6 Index]