compute_nees {navigation} | R Documentation |
Compute Normalized Estimation Errror Squared (NEES)
Description
Compute Normalized Estimation Errror Squared (NEES)
Usage
compute_nees(sols, step = 50, idx = 1:6, progressbar = FALSE)
Arguments
sols |
The set of solutions returned by the |
step |
do it for one sample out of |
idx |
Components of the states to be considered (default: position and orientation) |
progressbar |
A |
Value
Return a nees.stat
object which contains the Normalized Estimation Error Squared.
Author(s)
Davide Cucci, Lionel Voirol, Mehran Khaghani, Stéphane Guerrier
Examples
# load data
data("lemniscate_traj_ned")
head(lemniscate_traj_ned)
traj <- make_trajectory(data = lemniscate_traj_ned,
system = "ned")
timing <- make_timing(
nav.start = 0, # time at which to begin filtering
nav.end = 30,
freq.imu = 100,
# frequency of the IMU, can be slower wrt trajectory frequency
freq.gps = 1,
# GNSS frequency
freq.baro = 1,
# barometer frequency
# (to disable, put it very low, e.g. 1e-5)
gps.out.start = 20,
# to simulate a GNSS outage, set a time before nav.end
gps.out.end = 25
)
# create sensor for noise data generation
snsr.mdl <- list()
# this uses a model for noise data generation
acc.mdl <- WN(sigma2 = 5.989778e-05) +
AR1(phi = 9.982454e-01, sigma2 = 1.848297e-10) +
AR1(phi = 9.999121e-01, sigma2 = 2.435414e-11) +
AR1(phi = 9.999998e-01, sigma2 = 1.026718e-12)
gyr.mdl <- WN(sigma2 = 1.503793e-06) +
AR1(phi = 9.968999e-01, sigma2 = 2.428980e-11) +
AR1(phi = 9.999001e-01, sigma2 = 1.238142e-12)
snsr.mdl$imu <- make_sensor(name = "imu",
frequency = timing$freq.imu,
error_model1 = acc.mdl,
error_model2 = gyr.mdl)
# RTK-like GNSS
gps.mdl.pos.hor <- WN(sigma2 = 0.025^2)
gps.mdl.pos.ver <- WN(sigma2 = 0.05^2)
gps.mdl.vel.hor <- WN(sigma2 = 0.01^2)
gps.mdl.vel.ver <- WN(sigma2 = 0.02^2)
snsr.mdl$gps <- make_sensor(
name = "gps",
frequency = timing$freq.gps,
error_model1 = gps.mdl.pos.hor,
error_model2 = gps.mdl.pos.ver,
error_model3 = gps.mdl.vel.hor,
error_model4 = gps.mdl.vel.ver
)
# Barometer
baro.mdl <- WN(sigma2 = 0.5^2)
snsr.mdl$baro <- make_sensor(
name = "baro",
frequency = timing$freq.baro,
error_model1 = baro.mdl
)
# define sensor for Kalmna filter
KF.mdl <- list()
# make IMU sensor
KF.mdl$imu <- make_sensor(
name = "imu",
frequency = timing$freq.imu,
error_model1 = acc.mdl, error_model2 = gyr.mdl
)
KF.mdl$gps <- snsr.mdl$gps
KF.mdl$baro <- snsr.mdl$baro
# perform navigation simulation
num.runs <- 5 # number of Monte-Carlo simulations
res <- navigation(
traj.ref = traj,
timing = timing,
snsr.mdl = snsr.mdl,
KF.mdl = KF.mdl,
num.runs = num.runs,
noProgressBar = TRUE,
PhiQ_method = "4",
# order of the Taylor expansion of the matrix exponential
# used to compute Phi and Q matrices
compute_PhiQ_each_n = 10,
# compute new Phi and Q matrices every n IMU steps
# (execution time optimization)
parallel.ncores = 1,
P_subsampling = timing$freq.imu
) # keep one covariance every second
nees <- compute_nees(res, idx = 1:6, step = 100)
plot(nees)
[Package navigation version 0.0.1 Index]