effectsize {mvMORPH} | R Documentation |
Multivariate measure of association/effect size for objects of class "manova.gls"
Description
This function estimate the multivariate effectsize for all the outcomes variables of a multivariate analysis of variance
Usage
effectsize(x,...)
Arguments
x |
An object of class "manova.gls" |
... |
One can specify |
Details
This function allows estimating multivariate effect size for the four multivariate statistics implemented in manova.gls
(Pillai, Wilks, Roy, Hotelling-Lawley). For models fit by PL, a multivariate measure of effect size is estimated from the permuted data. Interpret only relatively.
Value
Return the effect size for all the terms of the MANOVA or pairwise tests.
Note
This function is still under development.
Author(s)
Julien Clavel
See Also
manova.gls
mvgls
mvols
pairwise.glh
Examples
set.seed(123)
n <- 32 # number of species
p <- 3 # number of traits
tree <- pbtree(n=n) # phylogenetic tree
R <- crossprod(matrix(runif(p*p),p)) # a random symmetric matrix (covariance)
# simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))
X <- rnorm(n) # continuous
grp <- rep(1:2, each=n/2)
dataset <- list(y=Y, x=X, grp=as.factor(grp))
# Model fit
model1 <- mvgls(y~x+grp, data=dataset, tree=tree, model="BM", method="LL")
# Multivariate test
(multivariate_test <- manova.gls(model1, test="Pillai"))
effectsize(multivariate_test)