svd_wrapper {multivarious} | R Documentation |
Singular Value Decomposition (SVD) Wrapper
Description
Computes the singular value decomposition of a matrix using one of the specified methods. It is designed to be an easy-to-use wrapper for various SVD methods available in R.
Usage
svd_wrapper(
X,
ncomp = min(dim(X)),
preproc = pass(),
method = c("fast", "base", "irlba", "propack", "rsvd", "svds"),
q = 2,
p = 10,
tol = .Machine$double.eps,
...
)
Arguments
X |
the input matrix |
ncomp |
the number of components to estimate (default: min(dim(X))) |
preproc |
the pre-processor to apply on the input matrix (e.g., |
method |
the SVD method to use: 'base', 'fast', 'irlba', 'propack', 'rsvd', or 'svds' |
q |
parameter passed to method |
p |
parameter passed to method |
tol |
minimum eigenvalue magnitude, otherwise component is dropped (default: .Machine$double.eps) |
... |
extra arguments passed to the selected SVD function |
Value
an SVD object that extends projector
Examples
# Load iris dataset and select the first four columns
data(iris)
X <- iris[, 1:4]
# Compute SVD using the base method and 3 components
fit <- svd_wrapper(X, ncomp = 3, preproc = center(), method = "base")
[Package multivarious version 0.2.0 Index]