bootstrap.pca {multivarious} | R Documentation |
PCA Bootstrap Resampling
Description
Perform bootstrap resampling for Principal Component Analysis (PCA) to estimate component and score variability.
Usage
## S3 method for class 'pca'
bootstrap(x, nboot = 100, k = ncomp(x), ...)
Arguments
x |
A fitted PCA model object. |
nboot |
The number of bootstrap resamples (default: 100). |
k |
The number of components to bootstrap (default: all components in the fitted PCA model). |
... |
Additional arguments to be passed to the specific model implementation of |
Value
A list
containing bootstrap z-scores for the loadings (zboot_loadings
) and scores (zboot_scores
).
References
Fisher, Aaron, Brian Caffo, Brian Schwartz, and Vadim Zipunnikov. 2016. "Fast, Exact Bootstrap Principal Component Analysis for P > 1 Million." Journal of the American Statistical Association 111 (514): 846-60.
Examples
X <- matrix(rnorm(10*100), 10, 100)
x <- pca(X, ncomp=9)
bootstrap_results <- bootstrap(x)
[Package multivarious version 0.2.0 Index]