unsupervised {multiblock} | R Documentation |
Unsupervised Multiblock Methods
Description
Collection of unsupervised multiblock methods:
SCA - Simultaneous Component Analysis (
sca
)GCA - Generalized Canonical Analysis (
gca
)GPA - Generalized Procrustes Analysis (
gpa
)MFA - Multiple Factor Analysis (
mfa
)PCA-GCA (
pcagca
)DISCO - Distinctive and Common Components with SCA (
disco
)HPCA - Hierarchical Principal component analysis (
hpca
)MCOA - Multiple Co-Inertia Analysis (
mcoa
)JIVE - Joint and Individual Variation Explained (
jive
)STATIS - Structuration des Tableaux à Trois Indices de la Statistique (
statis
)HOGSVD - Higher Order Generalized SVD (
hogsvd
)
Details
Original documentation of STATIS: statis. JIVE, STATIS and HOGSVD assume variable linked matrices/data.frames, while SCA handles both links.
See Also
Overviews of available methods, multiblock
, and methods organised by main structure: basic
, unsupervised
, asca
, supervised
and complex
.
Common functions for computation and extraction of results and plotting are found in multiblock_results
and multiblock_plots
, respectively.
Examples
# Object linked data
data(potato)
potList <- as.list(potato[c(1,2,9)])
pot.sca <- sca(potList)
# Variable linked data
data(candies)
candyList <- lapply(1:nlevels(candies$candy),function(x)candies$assessment[candies$candy==x,])
can.statis <- statis(candyList)
plot(can.statis$statis)