reshape_results {mulea} | R Documentation |
Reshape Results
Description
This function takes a model and model_results data, reshapes them into a suitable format for plotting, and returns the resulting data frame, which can be used for further analysis or visualization.
Usage
reshape_results(
model = NULL,
model_results = NULL,
model_ontology_col_name = "ontology_id",
ontology_id_colname = "ontology_id",
p_value_type_colname = "eFDR",
p_value_max_threshold = TRUE
)
Arguments
model |
a mulea model, created by the
|
model_results |
Result |
model_ontology_col_name |
Character, specifies the column name in the model that contains ontology IDs. It defines which column in the model should be used for matching ontology IDs. Possible values are 'ontology_id' and 'ontology_name'. The default value is 'ontology_id'. |
ontology_id_colname |
Character, specifies the column name for ontology IDs in the model results. It indicates which column in the model results contains ontology IDs for merging. Possible values are 'ontology_id' and 'ontology_name'. The default value is 'ontology_id'. |
p_value_type_colname |
Character, specifies the column name
for the type or raw or adjusted p-value in the result
|
p_value_max_threshold |
Logical, indicating whether to apply a p-value threshold when filtering the resulting data. If TRUE, the function filters the data based on a p-value threshold. |
Value
Return detailed and relaxed data.table
where model and results are
merged for plotting purposes.
See Also
plot_graph
, plot_barplot
,
plot_heatmap
Examples
library(mulea)
# loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(package="mulea", "extdata",
"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,
max_nr_of_elements = 400)
# loading the example data
sign_genes <- readLines(system.file(
package = "mulea", "extdata", "target_set.txt"))
background_genes <- readLines(
system.file(package="mulea", "extdata", "background_set.txt"))
# creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,
# the test set variable
element_names = sign_genes,
# the background set variable
background_element_names = background_genes,
# the p-value adjustment method
p_value_adjustment_method = "eFDR",
# the number of permutations
number_of_permutations = 10000,
# the number of processor threads to use
nthreads = 2)
# running the ORA
ora_results <- run_test(ora_model)
# reshaping results for visualisation
ora_reshaped_results <- reshape_results(model = ora_model,
model_results = ora_results,
# choosing which column to use for the indication of significance
p_value_type_colname = "eFDR")