get_DC_Report {mpwR} | R Documentation |
Data Completeness Report
Description
Generates a data completeness report from precursor to proteingroup-level
Usage
get_DC_Report(input_list, metric = c("absolute", "percentage"))
Arguments
input_list |
A list with data frames and respective level information. |
metric |
|
Details
For each submitted data a data completeness report is generated highlighting missing values on precursor-, peptide-, protein- and proteingroup-level.
Value
This function returns a list. For each analysis a respective data frame including missing value information per level is stored in the generated list.
Analysis - analysis name.
Nr.Missing.Values - number of missing values.
Precursor.IDs - number of precursor identification per missing value entry - absolute or in percentage.
Peptide.IDs - number of peptide identification per missing value entry - absolute or in percentage.
Protein.IDs - number of protein identification per missing value entry - absolute or in percentage.
ProteinGroup.IDs - number of proteingroup identification per missing value entry - absolute or in percentage.
Profile - categorical entries: "unique", "sparse", "shared with at least 50%" or "complete".
Author(s)
Oliver Kardell
Examples
# Load libraries
library(tibble)
library(stringr)
# Example data
data <- list(
DIANN = list(
filename = "B",
software = "DIA-NN",
data = list(
"DIA-NN" = tibble::tibble(
Run_mpwR = rep(c("A","B"), times = 10),
Precursor.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Protein.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4),
Peptide.IDs_mpwR = rep(c("A", "A", "B", "B", "C"), each = 4),
ProteinGroup.IDs_mpwR = rep(c("A2", "A3", "B2", "B3", "C1"), each = 4)
)
)
)
)
# Result
output <- get_DC_Report(
input_list = data,
metric = "absolute"
)