| mean_ {mosaic} | R Documentation | 
Aggregating functions
Description
The mosaic package makes several summary statistic functions (like mean and sd)
formula aware.
Usage
mean_(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
mean(x, ...)
median(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
range(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
sd(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
max(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
min(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
sum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
IQR(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
fivenum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
iqr(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
prod(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
sum(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
favstats(x, ..., data = NULL, groups = NULL, na.rm = TRUE)
quantile(x, ..., data = NULL, groups = NULL, na.rm = getOption("na.rm", FALSE))
var(x, y = NULL, na.rm = getOption("na.rm", FALSE), ..., data = NULL)
cor(x, y = NULL, ..., data = NULL)
cov(x, y = NULL, ..., data = NULL)
Arguments
x | 
 a numeric vector or a formula  | 
... | 
 additional arguments  | 
data | 
 a data frame in which to evaluate formulas (or bare names).
Note that the default is   | 
groups | 
 a grouping variable, typically a name of a variable in   | 
na.rm | 
 a logical indicating whether   | 
y | 
 a numeric vector or a formula  | 
Details
Many of these functions mask core R functions to provide an additional formula
interface.  Old behavior should be unchanged.  But if the first argument is a formula,
that formula, together with data are used to generate the numeric vector(s)
to be summarized.  Formulas of the shape x ~ a or ~ x | a can be used to
produce summaries of x for each subset defined by a.  Two-way aggregation
can be achieved using formulas of the form x ~ a + b or  x ~ a | b.  See
the examples.
Note
Earlier versions of these functions supported a "bare name + data frame" interface. This functionality has been removed since it was (a) ambiguous in some cases, (b) unnecessary, and (c) difficult to maintain.
Examples
mean(HELPrct$age)
mean( ~ age, data = HELPrct)
mean( ~ drugrisk, na.rm = TRUE, data = HELPrct)
mean(age ~ shuffle(sex), data = HELPrct)
mean(age ~ shuffle(sex), data = HELPrct, .format = "table")
# wrap in data.frame() to auto-convert awkward variable names
data.frame(mean(age ~ shuffle(sex), data = HELPrct, .format = "table"))
mean(age ~ sex + substance, data = HELPrct)
mean( ~ age | sex + substance, data = HELPrct)
mean( ~ sqrt(age), data = HELPrct)
sum( ~ age, data = HELPrct)
sd(HELPrct$age)
sd( ~ age, data = HELPrct)
sd(age ~ sex + substance, data = HELPrct)
var(HELPrct$age)
var( ~ age, data = HELPrct)
var(age ~ sex + substance, data = HELPrct)
IQR(width ~ sex, data = KidsFeet)
iqr(width ~ sex, data = KidsFeet)
favstats(width ~ sex, data = KidsFeet)
cor(length ~ width, data = KidsFeet)
cov(length ~ width, data = KidsFeet)
tally(is.na(mcs) ~ is.na(pcs), data = HELPmiss)
cov(mcs ~ pcs, data = HELPmiss)             # NA because of missing data
cov(mcs ~ pcs, data = HELPmiss, use = "complete")  # ignore missing data
# alternative approach using filter explicitly
cov(mcs ~ pcs, data = HELPmiss |> filter(!is.na(mcs) & !is.na(pcs)))