summary.iio.class {mokken} | R Documentation |
Summarize iio.class objects
Description
S3 Method for summary
of objects of class iio.class.
Summarize checks of invariant item ordering.
Usage
## S3 method for class 'iio.class'
summary(object, ...)
Arguments
object |
list produced by |
... |
Optional parameters will be ignored |
Value
method |
String describing the method used for investigating invariant item ordering: Either "MIIO" (Method Manifest Invariant Item Ordering), "MSCPM" (Method Manifest Scale Cumulative Probability Model), or "IT" (Method Increasingness in Transposition) |
item.summary |
Matrix with |
backward.selection |
Matrix showing the number of violations for each item (rows) at each step of the backward item selection proces (columns). The first column shows the number of violations for each item. Then in an iterative procedure, the item whose removal results in the largest decrease of violations is removed and the number of violations is computated again. If the reduction in the number of violations is undecisive then, from the candidate items, the item having the smallest scalability coefficient is removed. The backward selection procedure stops when there are no more violations. |
HT |
Numeric: Coefficient HT for the selected items. Given an IIO, coefficient HT expresses the strength of the ordering (Ligtvoet et al., 2010). |
Author(s)
L. A. van der Ark L.A.vanderArk@uva.nl
References
Koopman, L., Zijlstra, B. J. H., & Van der Ark, L. A. (2023a). Assumptions and Properties of Two-Level Nonparametric Item Response Theory Models. Manuscript submitted for publication.
Koopman, L., Zijlstra, B. J. H., & Van der Ark, L. A. (2023b). Evaluating Model Fit in Two-Level Mokken Scale Analysis. Manuscript submitted for publication.
Ligtvoet, R., L. A. van der Ark, J. M. te Marvelde, & K. Sijtsma (2010). Investigating an invariant item ordering for polytomously scored items. Educational and Psychological Measurement, 70, 578-595. doi:10.1177/0013164409355697
Ligtvoet, R., L. A. van der Ark, W. P. Bergsma, & K. Sijtsma (2011). Polytomous latent scales for the investigation of the ordering of items. Psychometrika, 76, 200-216. doi:10.1007/s11336-010-9199-8
Molenaar, I.W., & Sijtsma, K. (2000) User's Manual MSP5 for Windows [Software manual]. IEC ProGAMMA.
Sijtsma, K., R. R. Meijer, & Van der Ark, L. A. (2011). Mokken scale analysis as time goes by: An update for scaling practitioners. Personality and Individual Differences, 50, 31-37. doi:10.1016/j.paid.2010.08.016
Van der Ark, L. A. (2007). Mokken scale analysis in R. Journal of Statistical Software, 20 (11), 1-19. doi:10.18637/jss.v020.i11
Van der Ark, L. A. (2012). New developments in Mokken scale analysis in R. Journal of Statistical Software, 48(5), 1-27. doi:10.18637/jss.v048.i05
See Also
Examples
# Examples from Ligtvoet et al. (2011).
data(cavalini)
X1 <- cavalini[,c(3,5,6,7,9,11,13,14)]
# Use Method MIIO and remove items violating MIIO
iio.list1 <- check.iio(X1)
summary(iio.list1)
plot(iio.list1)
X2 <- X1[,is.na(charmatch(dimnames(X1)[[2]],names(iio.list1$items.removed)))]
# Use Method MSCPM and remove items violating MSCPM
iio.list2 <- check.iio(X2,method="MSCPM")
summary(iio.list2)
X3 <- X2[,is.na(charmatch(dimnames(X2)[[2]],names(iio.list2$items.removed)))]
# Use Method IT
iio.list3 <- check.iio(X3,method="IT")
summary(iio.list3)
# Compute two-level fit statistics (Koopman et al., 2023a, 2023b)
data("autonomySupport")
dat <- autonomySupport[, -1]
groups <- autonomySupport[, 1]
autonomyMIIO <- check.iio(dat, item.selection = FALSE, level.two.var = groups)
summary(autonomyMIIO)