plot.iio.class {mokken} | R Documentation |
Plot iio.class objects
Description
S3 Method to plot
objects of class iio.class.
Graphic display of the checks of iio.
One graph for each item plotting the estimated item response functions.
Usage
## S3 method for class 'iio.class'
plot(x, item.pairs = all.pairs, ci = TRUE, alpha = .05,
color = c("black", "blue"), transparancy = 20, ask = TRUE, ...)
Arguments
x |
Object of class iio.class produced by |
item.pairs |
vector containing the numbers of the item pairs for which the results are depicted graphically.
For example, |
ci |
Boolean. If |
alpha |
Type of plotted (1 - alpha) confidence intervals. By default 95-percent confidence intervals are depicted |
color |
Color of the plotted curves and confidence envelops. Defaults are black for the first item and blue for the second item. |
transparancy |
Transparancy of the confidence intervals. Higher values result in more opaque colors for the confidence intervals. |
ask |
Boolean. If |
... |
Optional graphical parameters will be ignored |
Details
The plot function corresponds to method MIIO; each graph plots the estimated item response functions (item rest-score functions) for two items.
For details of the method, see Ligtvoet et al. (2010, 2011); Sijtsma et al. (2012).
For details of the confidence envelopes, see Van der Ark (2012b).
For the implementation in R, see Van der Ark (2012a).
For ask==FALSE
, the default graphic device in R may only display the last graph.
Value
Returns a graph.
Author(s)
L. A. van der Ark L.A.vanderArk@uva.nl
References
Koopman, L., Zijlstra, B. J. H., & Van der Ark, L. A. (2023a). Assumptions and Properties of Two-Level Nonparametric Item Response Theory Models. Manuscript submitted for publication.
Koopman, L., Zijlstra, B. J. H., & Van der Ark, L. A. (2023b). Evaluating Model Fit in Two-Level Mokken Scale Analysis. Manuscript submitted for publication.
Ligtvoet, R., L. A. van der Ark, J. M. te Marvelde, & K. Sijtsma (2010). Investigating an invariant item ordering for polytomously scored items. Educational and Psychological Measurement, 70, 578-595. doi:10.1177/0013164409355697
Ligtvoet, R., L. A. van der Ark, W. P. Bergsma, & K. Sijtsma (2011). Polytomous latent scales for the investigation of the ordering of items. Psychometrika, 76, 200-216. doi:10.1007/s11336-010-9199-8
Sijtsma, K., R. R. Meijer, & Van der Ark, L. A. (2011). Mokken scale analysis as time goes by: An update for scaling practitioners. Personality and Individual Differences, 50, 31-37. doi:10.1016/j.paid.2010.08.016
Van der Ark, L. A. (2012). New developjements in Mokken scale analysis in R. Journal of Statistical Software, 48 (5), 1-27. doi:10.18637/jss.v048.i05
Van der Ark, L. A. (2014). Visualizing uncertainty of estimated response functions in nonparametric item response theory. In R. E. Millsap, L. A. van der Ark, D. Bolt, & C. M. Woods (Eds.), New developments in quantitative psychology (pp. 59-68). New York: Springer. doi:10.1007/978-1-4614-9348-8_5
See Also
Examples
data(acl)
Communality <- acl[,1:10]
iio.list <- check.iio(Communality)
summary(iio.list)
plot(iio.list)
# Compute two-level fit statistics (Koopman et al., 2023a, 2023b)
data("autonomySupport")
dat <- autonomySupport[, -1]
groups <- autonomySupport[, 1]
autonomyMIIO <- check.iio(dat, item.selection = FALSE, level.two.var = groups)
summary(autonomyMIIO)
plot(autonomyMIIO)