check.norms {mokken} | R Documentation |
Standard errors for norm statistics
Description
The function presents standard errors for the mean, standard deviation, standard scores, stanine boundaries, and percentiles based on a vector of test scores (Oosterhuis, Van der Ark, & Sijtsma, 2017).
Usage
check.norms(y, nice.output = TRUE)
Arguments
y |
numerical vector. Typically a numerical vector of length N, representing the test scores of N respondents. Missing values are not allowed |
nice.output |
Logical: If |
Value
list of five components:
(1) mean
: Sample mean and its standard error (noquote
).
(2) sd
: Sample standard deviation and its standard error (noquote
).
(3) z
: For each unique testscore, the test score, its frequency, the corresponding estimated standard score and its standard error (noquote
).
(4) sta9
: The estimates of the 8 boundaries of the stanines and their standard error (noquote
).
(5) z
: For each unique testscore, the test score, its frequency, the corresponding estimated percentile rank and its standard error (noquote
).
Author(s)
L. A. van der Ark L.A.vanderArk@uva.nl and H. E. M. Oosterhuis
References
Oosterhuis, H. E. M., Van der Ark, L. A., & Sijtsma, K. (2017). Standard errors and confidence intervals of norm statistics for educational and psychological tests. Psychometrika, 82, 559-588. doi:10.1007/s11336-016-9535-8
See Also
Examples
data(DS14)
# Handle missing data and recode negatively worded items
X <- DS14[, 3 : 16]
X <- twoway(X)
X <- recode(X, c(1, 3))
# Negative affectivity
Na <- X[, c(1, 3, 6, 8, 10, 11, 14)]
# Social inhibition
Si <- X[, c(2, 4, 5, 7, 9, 12, 13)]
# Norms
check.norms(rowSums(Na))
check.norms(rowSums(Si))