locglmfit {modelfree} | R Documentation |
Local polynomial estimator of a psychometric function
Description
Local polynomial estimator for the psychometric function and eta function (psychometric function transformed by link) for binomial data; also returns the hat matrix H.
Usage
locglmfit( xfit, r, m, x, h, returnH = FALSE, link = "logit",
guessing = 0, lapsing = 0, K = 2, p = 1,
ker = "dnorm", maxiter = 50, tol = 1e-6 )
Arguments
xfit |
points at which to calculate the estimate pfit |
r |
number of successes at points x |
m |
number of trials at points x |
x |
stimulus levels |
h |
bandwidth(s) |
returnH |
(optional) logical, if TRUE then hat matrix is calculated; default is FALSE |
link |
(optional) name of the link function; default is 'logit' |
guessing |
(optional) guessing rate; default is 0 |
lapsing |
(optional) lapsing rate; default is 0 |
K |
(optional) power parameter for Weibull and reverse Weibull link; default is 2 |
p |
(optional) degree of the polynomial; default is 1 |
ker |
(optional) kernel function for weights; default is 'dnorm' |
maxiter |
(optional) maximum number of iterations in Fisher scoring; default is 50 |
tol |
(optional) tolerance level at which to stop Fisher scoring; default is 1e-6 |
Value
pfit
value of the local polynomial estimate at points xfit
etafit
estimate of eta (link of pfit)
H
hat matrix (OPTIONAL)
Examples
data("Miranda_Henson")
x = Miranda_Henson$x
r = Miranda_Henson$r
m = Miranda_Henson$m
numxfit <- 199; # Number of new points to be generated minus 1
xfit <- (max(x)-min(x)) * (0:numxfit) / numxfit + min(x)
# Find a plug-in bandwidth
bwd <- bandwidth_plugin( r, m, x)
pfit <- locglmfit( xfit, r, m, x, bwd )$pfit
# Plot the fitted curve
plot( x, r / m, xlim = c( 0.1, 1.302 ), ylim = c( 0.0165, 0.965 ), type = "p", pch="*" )
lines(xfit, pfit )