binomfit_lims {modelfree} | R Documentation |
Parameter estimates for a psychometric function with FIXED guessing and lapsing rates
Description
This function fits a binomial generalised linear model with fixed guessing and lapsing rates.
Usage
binomfit_lims( r, m, x, p = 1, link = "logit", guessing = 0, lapsing = 0, K = 2 )
Arguments
r |
number of successes at points x |
m |
number of trials at points x |
x |
stimulus levels |
p |
(optional) degree of the polynomial; default is p = 1 |
link |
(optional) name of the link function; default is "logit" |
guessing |
(optional) guessing rate; default is 0 |
lapsing |
(optional) lapsing rate; default is 0 |
K |
(optional) power parameter for Weibull and reverse Weibull link; default is 2 |
Value
b
vector of estiamted coefficients for the linear part
fit
glm object to be used in evaluation of fitted values
Examples
data("Carcagno")
x = Carcagno$x
r = Carcagno$r
m = Carcagno$m
plot( x, r / m, xlim = c( 1.95, 4.35 ), ylim = c( 0.24, 0.99 ), type = "p", pch="*" )
guess = 1/3; # guessing rate
laps = 0; # lapsing rate
val <- binomfit_lims( r, m, x, link = "probit", guessing = guess, lapsing = laps )
numxfit <- 199 # Number of new points to be generated minus 1
xfit <- (max(x)-min(x)) * (0:numxfit) / numxfit + min(x)
# Plot the fitted curve
pfit<-predict( val$fit, data.frame( x = xfit ), type = "response" )
lines(xfit, pfit )
[Package modelfree version 1.2 Index]