binom_weib {modelfree} | R Documentation |
Weibull model for the psychometric function
Description
This function finds the maximum likelihood estimates of the parameters of the Weibull model for the psychometric function.
Usage
binom_weib( r, m, x, p = 1, initK = 2, guessing = 0, lapsing = 0 )
Arguments
r |
number of successes at points x |
m |
number of trials at points x |
x |
stimulus levels |
p |
(optional) degree of the polynomial; default is 1 |
initK |
(optional) initial value for K (power parameter in Weibull model); default is 2 |
guessing |
(optional) guessing rate; default is 0 |
lapsing |
(optional) lapsing rate; default is 0 |
Value
b
vector of estimated coefficients for the linear part
K
estiamte of the power parameter in the Weibull model
fit
glm object to be used in evaluation of fitted values
Examples
data("Miranda_Henson")
x = Miranda_Henson$x
r = Miranda_Henson$r
m = Miranda_Henson$m
numxfit <- 199; # Number of new points to be generated minus 1
xfit <- (max(x)-min(x)) * (0:numxfit) / numxfit + min(x)
val <- binom_weib( r, m, x )
# Plot the fitted curve
plot( x, r / m, xlim = c( 0.1, 1.302 ), ylim = c( 0.0165, 0.965 ), type = "p", pch="*" )
pfit <- predict( val$fit, data.frame( x = xfit ), type = "response" )
lines(xfit, pfit, col = "red" )
[Package modelfree version 1.2 Index]