| mnda_embedding {mnda} | R Documentation | 
Calculate the embedding space for a multiplex network
Description
Calculate the embedding space for a multiplex network
Usage
mnda_embedding(
  graph.data,
  outcome,
  indv.index = NULL,
  edge.threshold = 0,
  train.rep = 50,
  embedding.size = 2,
  epochs = 10,
  batch.size = 5,
  l2reg = 0,
  walk.rep = 100,
  n.steps = 5,
  random.walk = TRUE,
  demo = TRUE,
  verbose = TRUE
)
Arguments
graph.data | 
 dataframe of the graph data containing edge list and edge weights. column 1 and 2 consisting of the edge list (undirected). column 3 and 4 consisting the edge weights corresponding to each graph, respectively.  | 
outcome | 
 a vector of outcomes for each network.  | 
indv.index | 
 the index of individual networks.  | 
edge.threshold | 
 numeric value to set edge weights below the threshold to zero (default: 0). the greater edge weights do not change.  | 
train.rep | 
 numeric value to set the number of EDNN training repeats (default: 50).  | 
embedding.size | 
 the dimension of embedding space, equal to the number of the bottleneck hidden nodes (default: 5).  | 
epochs | 
 maximum number of pocks. An early stopping callback with a patience of 5 has been set inside the function (default = 10).  | 
batch.size | 
 batch size for learning (default = 5).  | 
l2reg | 
 the coefficient of L2 regularization for the input layer (default = 0).  | 
walk.rep | 
 number of repeats for the random walk (default: 100).  | 
n.steps | 
 number of the random walk steps (default: 5).  | 
random.walk | 
 boolean value to enable the random walk algorithm (default: TRUE).  | 
demo | 
 a boolean vector to indicate this is a demo example or not  | 
verbose | 
 if TRUE a progress bar is shown.  | 
Value
a list of embedding spaces for each node.
Examples
myNet = network_gen(N_nodes = 50, N_var_nodes = 5, N_var_nei = 40, noise_sd = .01)
graph_data = myNet[["data_graph"]]
embeddingSpaceList = mnda_embedding(graph.data=graph_data, outcome=c(1,2),
train.rep=2, random.walk=FALSE)