| EDNN {mnda} | R Documentation | 
Encoder decoder neural network (EDNN) function
Description
Encoder decoder neural network (EDNN) function
Usage
EDNN(
  X,
  Y,
  Xtest,
  embedding_size = 2,
  epochs = 10,
  batch_size = 5,
  l2reg = 0,
  demo = TRUE,
  verbose = TRUE
)
Arguments
X | 
 concatenated adjacency matrices for different layers containing the nodes in training phase  | 
Y | 
 concatenated random walk probability matrices for different layers containing the nodes in training phase  | 
Xtest | 
 concatenated adjacency matrices for different layers containing the nodes in test phase. Can be = X for transductive inference.  | 
embedding_size | 
 the dimension of embedding space, equal to the number of the bottleneck hidden nodes.  | 
epochs | 
 maximum number of pocks. An early stopping callback with a patience of 5 has been set inside the function (default = 10).  | 
batch_size | 
 batch size for learning (default = 5).  | 
l2reg | 
 the coefficient of L2 regularization for the input layer (default = 0).  | 
demo | 
 a boolean vector to indicate this is a demo example or not  | 
verbose | 
 if TRUE a progress bar is shown.  | 
Value
The embedding space for Xtest.
Examples
myNet = network_gen(N_nodes = 50)
graphData = myNet[["data_graph"]]
edge.list = graphData[,1:2]
edge.weight = graphData[,3:4]
XY = ednn_IOprepare(edge.list, edge.weight)
X = XY[["X"]]
Y = XY[["Y"]]
embeddingSpace = EDNN(X = X, Y = Y, Xtest = X)