EDNN {mnda} | R Documentation |
Encoder decoder neural network (EDNN) function
Description
Encoder decoder neural network (EDNN) function
Usage
EDNN(
X,
Y,
Xtest,
embedding_size = 2,
epochs = 10,
batch_size = 5,
l2reg = 0,
demo = TRUE,
verbose = TRUE
)
Arguments
X |
concatenated adjacency matrices for different layers containing the nodes in training phase |
Y |
concatenated random walk probability matrices for different layers containing the nodes in training phase |
Xtest |
concatenated adjacency matrices for different layers containing the nodes in test phase. Can be = X for transductive inference. |
embedding_size |
the dimension of embedding space, equal to the number of the bottleneck hidden nodes. |
epochs |
maximum number of pocks. An early stopping callback with a patience of 5 has been set inside the function (default = 10). |
batch_size |
batch size for learning (default = 5). |
l2reg |
the coefficient of L2 regularization for the input layer (default = 0). |
demo |
a boolean vector to indicate this is a demo example or not |
verbose |
if TRUE a progress bar is shown. |
Value
The embedding space for Xtest.
Examples
myNet = network_gen(N_nodes = 50)
graphData = myNet[["data_graph"]]
edge.list = graphData[,1:2]
edge.weight = graphData[,3:4]
XY = ednn_IOprepare(edge.list, edge.weight)
X = XY[["X"]]
Y = XY[["Y"]]
embeddingSpace = EDNN(X = X, Y = Y, Xtest = X)