association {mmstat4} | R Documentation |
Association measures
Description
Various association coefficients for nominal and ordinal data; the input formats follows stats::chisq.test()
.
-
concordant
concordant pairs -
discordant
discordant pairs -
ties.row
pairs tied on rows -
ties.col
pairs tied on columns -
nom.phi
Phi Coefficient -
nom.cc
Contingency Coefficient (Pearson's C) and Sakoda' s Adjusted Pearson's C -
nom.TT
Tshuprow's T (not meaningful for non-square tables) -
nom.CV
Cramer's V (for 2 x 2 tables V = Phi) -
nom.lambda
Goodman and Kruskal's Lambda with-
lambda.cr
The row variable is used as independent, the column variable as dependent variable. -
lambda.rc
The column variable is used as independent, the row variable as dependent variable. -
lambda.symmetric
Symmetric Lambda (the mean of both above).
-
-
nom.uncertainty
Uncertainty Coefficient (Theil's U) with-
ucc.cr
The row variable is used as independent, the column variable as dependent variable. -
uc.rc
The column variable is used as independent, the row variable as dependent variable. -
uc.symmetric
Symmetric uncertainty coefficient.
-
-
ord.gamma
Gamma coefficient -
ord.tau
a vector with Kendall-Stuart Tau's-
tau.a
Tau-a (for quadratic tables only) -
tau.b
Tau-b -
tau.c
Tau-c
-
-
ord.somers.d
Somers' d -
eta
Eta coefficient for nominal/interval data
Usage
concordant(x, y = NULL)
discordant(x, y = NULL)
ties.row(x, y = NULL)
ties.col(x, y = NULL)
nom.phi(x, y = NULL)
nom.cc(x, y = NULL)
nom.TT(x, y = NULL)
nom.CV(x, y = NULL)
nom.lambda(x, y = NULL)
nom.uncertainty(x, y = NULL)
ord.gamma(x, y = NULL)
ord.tau(x, y = NULL)
ord.somers.d(x, y = NULL)
eta(x, y, breaks = NULL)
Arguments
x |
a numeric vector, table or matrix. |
y |
a numeric vector; ignored if |
breaks |
either a numeric vector of two or more unique cut points or a single number (greater than or equal to 2)
giving the number of intervals into which |
Value
the association coefficient(s)
Source
From the archived ryouready
package by Mark Heckmann.
The code for the calculation of nom.lambda
, nom.uncertainty
, ord.gamma
, ord.tau
, ord.somers.d
was supplied by Marc Schwartz (under GPL 2) and checked against SPSS results.
Examples
## Nominal data
# remove gender from the table
hec <- apply(HairEyeColor, 1:2, sum)
nom.phi(hec)
nom.cc(hec)
nom.TT(hec)
nom.CV(hec)
nom.lambda(hec)
nom.uncertainty(hec)
## Ordinal data
# create a fake data set
ordx <- sample(5, size=100, replace=TRUE)
ordy <- sample(5, size=100, replace=TRUE)
concordant(ordx, ordy)
discordant(ordx, ordy)
ties.row(ordx, ordy)
ties.col(ordx, ordy)
ord.gamma(ordx, ordy)
ord.tau(ordx, ordy)
ord.somers.d(ordx, ordy)
## Interval/nominal data
eta(iris$Species, iris$Sepal.Length)