plot.pgls.iters {mmodely} | R Documentation |
Plot the PGLS iterations
Description
A plot of AIC (and AICc) vs R^2 (and adjusted R^2) for all of the PGLS iterations
Usage
## S3 method for class 'pgls.iters'
plot(x,
bests=bestBy(x$optim, by=c('n','q','qXn','rwGsm')[1], best=c('AICc','R2.adj')[1],
inverse=FALSE), ...)
Arguments
x |
a PGLSi[teration] object (a list of pgls model fits as well as optimization and tree parameter tables) |
bests |
a table of the 'best' models to highlight in the plot based on some optimization criterion (e.g. R2) |
... |
other parameters passed to 'plot' |
Value
a plot of all of PGLS iterations
Examples
data.path <- system.file("extdata","primate-example.data.csv", package="mmodely")
data <- read.csv(data.path, row.names=1)
pvs <- names(data[3:5])
data$gn_sp <- rownames(data)
tree.path <- system.file("extdata","primate-springer.2012.tre", package="mmodely")
phyl <- ape::read.tree(tree.path)[[5]]
mods <- get.model.combos(predictor.vars=pvs, outcome.var='OC', min.q=2)
PGLSi <- pgls.iter(models=mods, phylo=phyl, df=data, k=1,l=1,d=1)
# sprinkle in some missing data so as to make model selection more interesting
for(pv in pvs){ data[sample(x=1:nrow(data),size=2),pv] <- NA}
PGLSi <- pgls.iter(models=mods, phylo=phyl, df=data, k=1,l=1,d=1)
# find the lowest AIC within each q by n sized sub-dataset
plot.pgls.iters(x=PGLSi)
[Package mmodely version 0.2.5 Index]