pgls.iter {mmodely} | R Documentation |
Iterate through PGLS estimations
Description
This function takes phylogenetic tree and a list of (all possible) combinations of variables as a vector of model strings and estimates PGLS fits based on the bounds or tree parameters provided seperately.
Usage
pgls.iter(models, phylo, df, gs.clmn='gn_sp',
b=list(lambda=c(.2,1),kappa=c(.2,2.8),delta=c(.2,2.8)),l='ML', k='ML',d='ML')
Arguments
models |
a vector of all possible model formulas (as character strings) |
phylo |
a phylogenetic tree |
df |
the name of the column used to specify 'Genus_species' |
gs.clmn |
the name of the column containing the 'Genus_species' vector |
b |
a list of vectors of upper and lower bounds for kappa, lambda, and delta |
k |
the fixed or 'ML' value for kappa |
l |
the fixed or 'ML' value for lambda |
d |
the fixed or 'ML' value for delta |
Value
a list of fit PGLS regression models plus 'optim' and 'param' support tables
Examples
data.path <- system.file("extdata","primate-example.data.csv", package="mmodely")
data <- read.csv(data.path, row.names=1)
pvs <- names(data[3:5])
data$gn_sp <- rownames(data)
tree.path <- system.file("extdata","primate-springer.2012.tre", package="mmodely")
phyl <- ape::read.tree(tree.path)[[5]]
comp <- comp.data(phylo=phyl, df=data)
mods <- get.model.combos(predictor.vars=pvs, outcome.var='OC', min.q=2)
PGLSi <- pgls.iter(models=mods, phylo=phyl, df=data, k=1,l=1,d=1)
[Package mmodely version 0.2.5 Index]