autoplot.TuningInstanceBatchSingleCrit {mlr3viz} | R Documentation |
Plots for Tuning Instances
Description
Visualizations for mlr3tuning::TuningInstanceBatchSingleCrit.
The argument type
controls what kind of plot is drawn.
Possible choices are:
-
"marginal"
(default): Scatter plots of x versus y. The color of the points shows the batch number. -
"performance"
: Scatter plots of batch number versus y -
"parameter"
: Scatter plots of batch number versus input. The color of the points shows the y values. -
"parallel"
: Parallel coordinates plot. hyperparameters are rescaled by(x - mean(x)) / sd(x)
. -
"points"
: Scatter plot of two x dimensions versus. The color of the points shows the y values. -
"surface"
: Surface plot of two x dimensions versus y values. The y values are interpolated with the supplied mlr3::Learner. -
"pairs"
: Plots all x and y values against each other. -
"incumbent"
: Plots the incumbent versus the number of configurations.
Usage
## S3 method for class 'TuningInstanceBatchSingleCrit'
autoplot(
object,
type = "marginal",
cols_x = NULL,
trafo = FALSE,
learner = mlr3::lrn("regr.ranger"),
grid_resolution = 100,
theme = theme_minimal(),
...
)
Arguments
object |
|
type |
(character(1)): |
cols_x |
( |
trafo |
( |
learner |
(mlr3::Learner) |
grid_resolution |
( |
theme |
( |
... |
(ignored). |
Value
Examples
if (requireNamespace("mlr3tuning") && requireNamespace("patchwork")) {
library(mlr3tuning)
learner = lrn("classif.rpart")
learner$param_set$values$cp = to_tune(0.001, 0.1)
learner$param_set$values$minsplit = to_tune(1, 10)
instance = ti(
task = tsk("iris"),
learner = learner,
resampling = rsmp("holdout"),
measure = msr("classif.ce"),
terminator = trm("evals", n_evals = 10))
tuner = tnr("random_search")
tuner$optimize(instance)
# plot performance versus batch number
autoplot(instance, type = "performance")
# plot cp values versus performance
autoplot(instance, type = "marginal", cols_x = "cp")
# plot transformed parameter values versus batch number
autoplot(instance, type = "parameter", trafo = TRUE)
# plot parallel coordinates plot
autoplot(instance, type = "parallel")
# plot pairs
autoplot(instance, type = "pairs")
}