| makeMulticlassWrapper {mlr} | R Documentation |
Fuse learner with multiclass method.
Description
Fuses a base learner with a multi-class method. Creates a learner object, which can be used like any other learner object. This way learners which can only handle binary classification will be able to handle multi-class problems, too.
We use a multiclass-to-binary reduction principle, where multiple binary problems are created from the multiclass task. How these binary problems are generated is defined by an error-correcting-output-code (ECOC) code book. This also allows the simple and well-known one-vs-one and one-vs-rest approaches. Decoding is currently done via Hamming decoding, see e.g. here https://jmlr.org/papers/volume11/escalera10a/escalera10a.pdf.
Currently, the approach always operates on the discrete predicted labels of the binary base models (instead of their probabilities) and the created wrapper cannot predict posterior probabilities.
Usage
makeMulticlassWrapper(learner, mcw.method = "onevsrest")
Arguments
learner |
(Learner | |
mcw.method |
( |
Value
See Also
Other wrapper:
makeBaggingWrapper(),
makeClassificationViaRegressionWrapper(),
makeConstantClassWrapper(),
makeCostSensClassifWrapper(),
makeCostSensRegrWrapper(),
makeDownsampleWrapper(),
makeDummyFeaturesWrapper(),
makeExtractFDAFeatsWrapper(),
makeFeatSelWrapper(),
makeFilterWrapper(),
makeImputeWrapper(),
makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper(),
makeMultilabelNestedStackingWrapper(),
makeMultilabelStackingWrapper(),
makeOverBaggingWrapper(),
makePreprocWrapper(),
makePreprocWrapperCaret(),
makeRemoveConstantFeaturesWrapper(),
makeSMOTEWrapper(),
makeTuneWrapper(),
makeUndersampleWrapper(),
makeWeightedClassesWrapper()