| makeClassificationViaRegressionWrapper {mlr} | R Documentation |
Classification via regression wrapper.
Description
Builds regression models that predict for the positive class whether a particular example belongs to it (1) or not (-1).
Probabilities are generated by transforming the predictions with a softmax.
Inspired by WEKA's ClassificationViaRegression (http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/ClassificationViaRegression.html).
Usage
makeClassificationViaRegressionWrapper(learner, predict.type = "response")
Arguments
learner |
(Learner | |
predict.type |
( |
Value
See Also
Other wrapper:
makeBaggingWrapper(),
makeConstantClassWrapper(),
makeCostSensClassifWrapper(),
makeCostSensRegrWrapper(),
makeDownsampleWrapper(),
makeDummyFeaturesWrapper(),
makeExtractFDAFeatsWrapper(),
makeFeatSelWrapper(),
makeFilterWrapper(),
makeImputeWrapper(),
makeMulticlassWrapper(),
makeMultilabelBinaryRelevanceWrapper(),
makeMultilabelClassifierChainsWrapper(),
makeMultilabelDBRWrapper(),
makeMultilabelNestedStackingWrapper(),
makeMultilabelStackingWrapper(),
makeOverBaggingWrapper(),
makePreprocWrapper(),
makePreprocWrapperCaret(),
makeRemoveConstantFeaturesWrapper(),
makeSMOTEWrapper(),
makeTuneWrapper(),
makeUndersampleWrapper(),
makeWeightedClassesWrapper()
Examples
lrn = makeLearner("regr.rpart")
lrn = makeClassificationViaRegressionWrapper(lrn)
mod = train(lrn, sonar.task, subset = 1:140)
predictions = predict(mod, newdata = getTaskData(sonar.task)[141:208, 1:60])