generateLearningCurveData {mlr} | R Documentation |
Generates a learning curve.
Description
Observe how the performance changes with an increasing number of observations.
Usage
generateLearningCurveData(
learners,
task,
resampling = NULL,
percs = seq(0.1, 1, by = 0.1),
measures,
stratify = FALSE,
show.info = getMlrOption("show.info")
)
Arguments
learners |
[(list of) Learner) |
task |
(Task) |
resampling |
(ResampleDesc | ResampleInstance) |
percs |
(numeric) |
measures |
[(list of) Measure) |
stratify |
( |
show.info |
( |
Value
(LearningCurveData). A list
containing:
The Task
List of Measure)
Performance measuresdata (data.frame) with columns:
-
learner
Names of learners. -
percentage
Percentages drawn from the training split. One column for each Measure passed to generateLearningCurveData.
-
See Also
Other generate_plot_data:
generateCalibrationData()
,
generateCritDifferencesData()
,
generateFeatureImportanceData()
,
generateFilterValuesData()
,
generatePartialDependenceData()
,
generateThreshVsPerfData()
,
plotFilterValues()
Other learning_curve:
plotLearningCurve()
Examples
r = generateLearningCurveData(list("classif.rpart", "classif.knn"),
task = sonar.task, percs = seq(0.2, 1, by = 0.2),
measures = list(tp, fp, tn, fn),
resampling = makeResampleDesc(method = "Subsample", iters = 5),
show.info = FALSE)
plotLearningCurve(r)