generateHyperParsEffectData {mlr} | R Documentation |
Generate hyperparameter effect data.
Description
Generate cleaned hyperparameter effect data from a tuning result or from a nested cross-validation tuning result. The object returned can be used for custom visualization or passed downstream to an out of the box mlr method, plotHyperParsEffect.
Usage
generateHyperParsEffectData(
tune.result,
include.diagnostics = FALSE,
trafo = FALSE,
partial.dep = FALSE
)
Arguments
tune.result |
(TuneResult | ResampleResult) |
include.diagnostics |
( |
trafo |
( |
partial.dep |
( |
Value
(HyperParsEffectData
)
Object containing the hyperparameter effects dataframe, the tuning
performance measures used, the hyperparameters used, a flag for including
diagnostic info, a flag for whether nested cv was used, a flag for whether
partial dependence should be generated, and the optimization algorithm used.
Examples
## Not run:
# 3-fold cross validation
ps = makeParamSet(makeDiscreteParam("C", values = 2^(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
res = tuneParams("classif.ksvm", task = pid.task, resampling = rdesc,
par.set = ps, control = ctrl)
data = generateHyperParsEffectData(res)
plt = plotHyperParsEffect(data, x = "C", y = "mmce.test.mean")
plt + ylab("Misclassification Error")
# nested cross validation
ps = makeParamSet(makeDiscreteParam("C", values = 2^(-4:4)))
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
lrn = makeTuneWrapper("classif.ksvm", control = ctrl,
resampling = rdesc, par.set = ps)
res = resample(lrn, task = pid.task, resampling = cv2,
extract = getTuneResult)
data = generateHyperParsEffectData(res)
plotHyperParsEffect(data, x = "C", y = "mmce.test.mean", plot.type = "line")
## End(Not run)