| generateFilterValuesData {mlr} | R Documentation | 
Calculates feature filter values.
Description
Calculates numerical filter values for features. For a list of features, use listFilterMethods.
Usage
generateFilterValuesData(
  task,
  method = "FSelectorRcpp_information.gain",
  nselect = getTaskNFeats(task),
  ...,
  more.args = list()
)
Arguments
task | 
 (Task)  | 
method | 
 (character | list)  | 
nselect | 
 (  | 
... | 
 (any)  | 
more.args | 
 (named list)  | 
Value
(FilterValues). A list containing:
task.desc | 
 [TaskDesc)  | 
data | 
 (  | 
Simple and ensemble filters
Besides passing (multiple) simple filter methods you can also pass an
ensemble filter method (in a list). The ensemble method will use the simple
methods to calculate its ranking. See listFilterEnsembleMethods() for
available ensemble methods.
See Also
Other generate_plot_data: 
generateCalibrationData(),
generateCritDifferencesData(),
generateFeatureImportanceData(),
generateLearningCurveData(),
generatePartialDependenceData(),
generateThreshVsPerfData(),
plotFilterValues()
Other filter: 
filterFeatures(),
getFilteredFeatures(),
listFilterEnsembleMethods(),
listFilterMethods(),
makeFilter(),
makeFilterEnsemble(),
makeFilterWrapper(),
plotFilterValues()
Examples
# two simple filter methods
fval = generateFilterValuesData(iris.task,
  method = c("FSelectorRcpp_gain.ratio", "FSelectorRcpp_information.gain"))
# using ensemble method "E-mean"
fval = generateFilterValuesData(iris.task,
  method = list("E-mean", c("FSelectorRcpp_gain.ratio",
    "FSelectorRcpp_information.gain")))