computeContourValues {mkde} | R Documentation |
Find thresholds for contour intervals
Description
Find the cell or voxel probabilities that correspond to user-specified probability contours
Usage
computeContourValues(mkde.obj, prob)
Arguments
mkde.obj |
An MKDE object with density initialized |
prob |
Probabilities (i.e. proportions) for desired contours of the MKDE |
Details
This function computes threshold cell or voxel probability values
corresponding to contours for specified proportions of the utilization
distribution. Note that the arugment prob
specifies the
cumulative probability of the cells or voxels within the contour
corresponding to the cell or voxel threshold probability. The cell or
voxel threshold probabilities may be orders of magnitude smaller than
the cumulative probabilities provided in the prob
argument.
Value
A data frame with the probabilities given in the prob argument and corresponding thresholds in the MKDE
Author(s)
Jeff A. Tracey, PhD
USGS Western Ecological Research Center, San Diego Field Station
jatracey@usgs.gov
James Sheppard, PhD
San Diego Zoo Institute for Conservation Research
jsheppard@sandiegozoo.org
Examples
data(condor)
# Find min/max coordinates and add buffer
xmax = max(condor$x) + 1000
xmin = min(condor$x) - 1000
ymax = max(condor$y) + 1000
ymin = min(condor$y) - 1000
# Calculate grid dimensions
xrange <- xmax - xmin
yrange <- ymax - ymin
cell.sz = 150
nx <- as.integer(xrange/cell.sz)
ny <- as.integer(yrange/cell.sz)
mv.dat <- initializeMovementData(condor$t, condor$x, condor$y, sig2obs=25.0, t.max=185.0)
mkde.obj <- initializeMKDE2D(xmin, cell.sz, nx, ymin, cell.sz, ny)
dens.res <- initializeDensity(mkde.obj, mv.dat)
mkde.obj <- dens.res$mkde.obj
mv.dat <- dens.res$move.dat
my.quantiles <- c(0.95, 0.75, 0.50)
res <- computeContourValues(mkde.obj, my.quantiles)
print(res)