plotly_weibullRMM {mixtools} | R Documentation |
Plot sequences from the Stochastic EM algorithm for mixture of Weibull using plotly
Description
This is an updated version of plotweibullRMM
function by using plotly
function. For technical details, please refer to plotweibullRMM
.
Usage
plotly_weibullRMM(a, title=NULL, rowstyle=TRUE, subtitle=NULL,
width = 3 , col = NULL ,
title.size = 15 , title.x = 0.5 , title.y = 0.95,
xlab = "Iterations" , xlab.size = 15 , xtick.size = 15,
ylab = "Estimates" , ylab.size = 15 , ytick.size = 15,
legend.size = 15)
Arguments
a |
An object returned by |
title |
The title of the plot, set to some default value if |
rowstyle |
Window organization, for plots in rows (the default) or columns. |
subtitle |
A subtitle for the plot, set to some default value if |
width |
Line width. |
col |
Color of lines. Number of colors specified needs to be consistent with number of components. |
title.size |
Size of the main title. |
title.x |
Horsizontal position of the main title. |
title.y |
Vertical posotion of the main title. |
xlab |
Label of X-axis. |
xlab.size |
Size of the lable of X-axis. |
xtick.size |
Size of tick lables of X-axis. |
ylab |
Label of Y-axis. |
ylab.size |
Size of the lable of Y-axis. |
ytick.size |
Size of tick lables of Y-axis. |
legend.size |
Size of legend. |
Value
The plot returned.
Author(s)
Didier Chauveau
References
Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7
See Also
Related functions:
weibullRMM_SEM
, summary.mixEM
, plotweibullRMM
.
Other models and algorithms for censored lifetime data
(name convention is model_algorithm):
expRMM_EM
,
spRMM_SEM
.
Examples
n = 500 # sample size
m = 2 # nb components
lambda=c(0.4, 0.6)
shape <- c(0.5,5); scale <- c(1,20) # model parameters
set.seed(321)
x <- rweibullmix(n, lambda, shape, scale) # iid ~ weibull mixture
cs=runif(n,0,max(x)+10) # iid censoring times
t <- apply(cbind(x,cs),1,min) # censored observations
d <- 1*(x <= cs) # censoring indicator
## set arbitrary or "reasonable" (e.g., data-driven) initial values
l0 <- rep(1/m,m); sh0 <- c(1, 2); sc0 <- c(2,10)
# Stochastic EM algorithm
a <- weibullRMM_SEM(t, d, lambda = l0, shape = sh0, scale = sc0, maxit = 200)
summary(a) # Parameters estimates etc
plotly_weibullRMM(a , legend.size = 20) # plot of St-EM sequences