| plotly_spEMN01 {mixtools} | R Documentation |
Plot mixture pdf for the semiparametric mixture model output by spEMsymlocN01 using plotly.
Description
This is an updated version of plotlspEMN01 function by using plotly. For technical details, please refer to plot.spEMN01.
Usage
plotly_spEMN01(x, bw=x$bandwidth, knownpdf=dnorm, add.plot=FALSE,
width = 3 , col.dens = NULL, col.hist = '#1f77b4',
title = NULL , title.size = 15 ,
title.x = 0.5 , title.y = 0.95,
xlab = "t" , xlab.size = 15 , xtick.size = 15,
ylab = "Density" , ylab.size = 15 , ytick.size = 15,
legend.text = "Densities" , legend.text.size = 15 ,
legend.size = 15)
Arguments
x |
An object of class "spEMN01" as returned by spEMsymlocN01 |
bw |
Bandwidth for weighted kernel density estimation. |
knownpdf |
The known density of component 1, default to |
add.plot |
Set to TRUE to add to an existing plot. |
width |
Line width. |
col.dens |
Color of density lines. Number of colors specified needs to be consistent with number of components. |
col.hist |
Color of histogram. |
title |
Text of the main title. |
title.size |
Size of the main title. |
title.x |
Horsizontal position of the main title. |
title.y |
Vertical posotion of the main title. |
xlab |
Label of X-axis. |
xlab.size |
Size of the lable of X-axis. |
xtick.size |
Size of tick lables of X-axis. |
ylab |
Label of Y-axis. |
ylab.size |
Size of the lable of Y-axis. |
ytick.size |
Size of tick lables of Y-axis. |
legend.text |
Title of legend. |
legend.text.size |
Size of the legend title. |
legend.size |
Size of legend. |
Value
A plot of the density of the mixture
Author(s)
Didier Chauveau
References
Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale simultaneous hypothesis testing in soil monitoring: A semi-parametric mixture approach, preprint (2013).
See Also
Examples
## Probit transform of p-values
## from a Beta-Uniform mixture model
## comparion of parametric and semiparametric EM fit
## Note: in actual situations n=thousands
set.seed(50)
n=300 # nb of multiple tests
m=2 # 2 mixture components
a=c(1,0.1); b=c(1,1); lambda=c(0.6,0.4) # parameters
z=sample(1:m, n, rep=TRUE, prob = lambda)
p <- rbeta(n, shape1 = a[z], shape2 = b[z]) # p-values
o <- order(p)
cpd <- cbind(z,p)[o,] # sorted complete data, z=1 if H0, 2 if H1
p <- cpd[,2] # sorted p-values
y <- qnorm(p) # probit transform of the pvalues
# gaussian EM fit with component 1 constrained to N(0,1)
s1 <- normalmixEM(y, mu=c(0,-4),
mean.constr = c(0,NA), sd.constr = c(1,NA))
s2 <- spEMsymlocN01(y, mu0 = c(0,-3)) # spEM with N(0,1) fit
plotly_spEMN01(s2 , add.plot = FALSE)