plotly_expRMM {mixtools} | R Documentation |
Plot sequences from the EM algorithm for censored mixture of exponentials using plotly
Description
This is an updated function of plotexpRMM
. For more technical details, please refer to plotexpRMM
.
Usage
plotly_expRMM(a , title = NULL , rowstyle = TRUE , subtitle=NULL,
width = 2 , cex = 2 , col.comp = NULL,
legend.text = NULL, legend.text.size = 15, legend.size = 15,
title.x = 0.5, title.y = 0.95, title.size = 15,
xlab.size = 15, xtick.size = 15,
ylab.size = 15, ytick.size = 15)
Arguments
a |
An object returned by |
title |
The title of the plot, set to some default value if |
rowstyle |
Window organization, for plots in rows (the default) or columns. |
subtitle |
A subtitle for the plot, set to some default value if |
width |
Line width. |
cex |
Size of dots. |
col.comp |
Color of different components. Number of color specified needs to be consistent with number of components. |
legend.text |
Title of legend. |
legend.text.size |
Size of the legend title. |
legend.size |
Size of legend. |
title.size |
Size of the main title. |
title.x |
Horsizontal position of the main title. |
title.y |
Vertical posotion of the main title. |
xlab.size |
Size of the lable of X-axis. |
xtick.size |
Size of tick lables of X-axis. |
ylab.size |
Size of the lable of Y-axis. |
ytick.size |
Size of tick lables of Y-axis. |
Value
The plot returned
Author(s)
Didier Chauveau
References
Bordes, L., and Chauveau, D. (2016), Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data, Computational Statistics, Volume 31, Issue 4, pages 1513-1538. https://link.springer.com/article/10.1007/s00180-016-0661-7
See Also
Related functions:
expRMM_EM
, summary.mixEM
, plot.mixEM
, plotexpRMM
.
Other models and algorithms for censored lifetime data
(name convention is model_algorithm):
weibullRMM_SEM
, spRMM_SEM
.
Examples
n=300 # sample size
m=2 # number of mixture components
lambda <- c(1/3,1-1/3); rate <- c(1,1/10) # mixture parameters
set.seed(1234)
x <- rexpmix(n, lambda, rate) # iid ~ exponential mixture
cs=runif(n,0,max(x)) # Censoring (uniform) and incomplete data
t <- apply(cbind(x,cs),1,min) # observed or censored data
d <- 1*(x <= cs) # censoring indicator
###### EM for RMM, exponential lifetimes
l0 <- rep(1/m,m); r0 <- c(1, 0.5) # "arbitrary" initial values
a <- expRMM_EM(t, d, lambda=l0, rate=r0, k = m)
summary(a) # EM estimates etc
plotly_expRMM(a , rowstyle = TRUE) # plot of EM sequences