plotly_FDR {mixtools} | R Documentation |
Plot False Discovery Rate (FDR) estimates from output by EM-like strategies using plotly
Description
This is an updated version of plotFDR
. For more technical details, please refer to plotFDR
.
Usage
plotly_FDR(post1, post2=NULL, lg1="FDR 1", lg2=NULL,
compH0=1, alpha=0.1, complete.data =NULL, pctfdr=0.3,
col = NULL, width = 3 ,
title = NULL , title.size = 15 , title.x = 0.5 , title.y = 0.95,
xlab = "Index" , xlab.size = 15 , xtick.size = 15,
ylab = "Probability" , ylab.size = 15 , ytick.size = 15,
legend.text = "" , legend.text.size = 15 , legend.size = 15)
Arguments
post1 |
The matrix of posterior probabilities from objects such as the output
from |
post2 |
A second object like |
lg1 |
Text describing the FDR estimate in |
lg2 |
Text describing the FDR estimate in |
compH0 |
The component indicator associated to the null hypothesis H0,
normally 1 since it is defined in this way in |
alpha |
The target FDR level; the index at which the FDR estimate crosses the horizontal line for level |
complete.data |
An array with |
pctfdr |
The level up to which the FDR is plotted, i.e. the scale of the vertical axis. |
col |
Color of traces. |
width |
Width of traces. |
title |
Text of the main title. |
title.size |
Size of the main title. |
title.x |
Horsizontal position of the main title. |
title.y |
Vertical posotion of the main title. |
xlab |
Label of X-axis. |
xlab.size |
Size of the lable of X-axis. |
xtick.size |
Size of tick lables of X-axis. |
ylab |
Label of Y-axis. |
ylab.size |
Size of the lable of Y-axis. |
ytick.size |
Size of tick lables of Y-axis. |
legend.text |
Title of legend. |
legend.text.size |
Size of the legend title. |
legend.size |
Size of legend. |
Value
A plot of one or two FDR estimates, with the true FDR if available
Author(s)
Didier Chauveau
References
Chauveau, D., Saby, N., Orton, T. G., Lemercier B., Walter, C. and Arrouys, D. Large-scale simultaneous hypothesis testing in monitoring carbon content from French soil database – A semi-parametric mixture approach, Geoderma 219-220 (2014), 117-124.
See Also
Examples
## Probit transform of p-values
## from a Beta-Uniform mixture model
## comparion of parametric and semiparametric EM fit
## Note: in actual situations n=thousands
set.seed(50)
n=300 # nb of multiple tests
m=2 # 2 mixture components
a=c(1,0.1); b=c(1,1); lambda=c(0.6,0.4) # parameters
z=sample(1:m, n, rep=TRUE, prob = lambda)
p <- rbeta(n, shape1 = a[z], shape2 = b[z]) # p-values
o <- order(p)
cpd <- cbind(z,p)[o,] # sorted complete data, z=1 if H0, 2 if H1
p <- cpd[,2] # sorted p-values
y <- qnorm(p) # probit transform of the pvalues
# gaussian EM fit with component 1 constrained to N(0,1)
s1 <- normalmixEM(y, mu=c(0,-4),
mean.constr = c(0,NA), sd.constr = c(1,NA))
s2 <- spEMsymlocN01(y, mu0 = c(0,-3)) # spEM with N(0,1) fit
plotly_FDR(s1$post, s2$post, lg1 = "normalmixEM", lg2 = "spEMsymlocN01",
complete.data = cpd) # with true FDR computed from z