boot.se {mixtools} | R Documentation |
Performs Parametric Bootstrap for Standard Error Approximation
Description
Performs a parametric bootstrap by producing B bootstrap samples for the parameters in the specified mixture model.
Usage
boot.se(em.fit, B = 100, arbmean = TRUE, arbvar = TRUE,
N = NULL, ...)
Arguments
em.fit |
An object of class |
B |
The number of bootstrap samples to produce. The default is 100, but ideally, values of 1000 or more would be more acceptable. |
arbmean |
If FALSE, then a scale mixture analysis can be performed for |
arbvar |
If FALSE, then a location mixture analysis can be performed for |
N |
An n-vector of number of trials for the logistic regression type |
... |
Additional arguments passed to the various EM algorithms for the mixture of interest. |
Value
boot.se
returns a list with the bootstrap samples and standard errors for the mixture of interest.
References
McLachlan, G. J. and Peel, D. (2000) Finite Mixture Models, John Wiley and Sons, Inc.
Examples
## Bootstrapping standard errors for a regression mixture case.
data(NOdata)
attach(NOdata)
set.seed(100)
em.out <- regmixEM(Equivalence, NO, arbvar = FALSE)
out.bs <- boot.se(em.out, B = 10, arbvar = FALSE)
out.bs