HWE.Chisq {mixIndependR} | R Documentation |
Test the Hardy Weinberg Equilibrium with Chi-square test####
Description
Test the Hardy Weinberg Equilibrium with Chi-square test####
Usage
HWE.Chisq(G,G0,rescale.p=FALSE,simulate.p.value=TRUE,B=2000)
Arguments
G |
a dataframe of observed genotype frequencies. Each row denotes each genotype; each column denotes each marker. The order of markers follows x; the genotypes are ordered by: from 1:l-th column, the genotypes are homozygous in order as : p1p1, p2p2,p3p3,...,plpl;from ll-th to u-th column, the genotypes are heterozygous in order as:choose(l,2) like: p1p2,p1p3,...,p1pl,p2p3,p2p4,...p2pl,...p(l-1)pl |
G0 |
a dataframe of expected genotype probabilities;each row denotes each genotype; each column denotes each loci. The order of markers follows x; the genotypes are ordered by: from 1:l-th column, the genotypes are homozygous in order as : p1p1, p2p2,p3p3,...,plpl;from ll-th to u-th column, the genotypes are heterozygous in order as:choose(l,2) like: p1p2,p1p3,...,p1pl,p2p3,p2p4,...p2pl,...p(l-1)pl |
rescale.p |
a logical scalar; if TRUE then p is rescaled (if necessary) to sum to 1. If rescale.p is FALSE, and p does not sum to 1, an error is given. |
simulate.p.value |
a logical indicating whether to compute p-values by Monte Carlo simulation. |
B |
an integer specifying the number of replicates used in the Monte Carlo test. |
Details
This function check the Hardy Weinberg Equilibrium from observed and expected distribution with Chi-square test#####
Value
a vector of result of p-values for chi-square test; the orders of markers follows x.
Examples
require(mixIndependR)
x <- data.frame(STR1=c("11|12","12|13","11|13","13|15"),
STR2=c("12|12","13|14","13|13","14|15"),
SNP1=c("A|T","A|A","T|A","A|T"),
SNP2=c("A|A","T|T","A|T","T|A"))
G <- GenotypeFreq(x,expect = FALSE)
G0 <- GenotypeFreq(x,expect = TRUE)
HWE.Chisq(G,G0,rescale.p=FALSE,simulate.p.value=TRUE,B=2000)