| summary.mipfp {mipfp} | R Documentation |
Summarizing objects of class mipfp
Description
Summary method for class mipfp.
Usage
## S3 method for class 'mipfp'
summary(object, cov.method = "delta", prop = FALSE,
target.list = NULL, l.names = 0, ...)
## S3 method for class 'summary.mipfp'
print(x, ...)
Arguments
object |
An object of class |
x |
An object of class |
cov.method |
Indicates which method to use to compute the covariance. Possible values
are Delta ( |
prop |
If set to |
target.list |
The list of the dimensions of the targets used by for the estimation process (see Estimate for more details). |
l.names |
If set to a value greater than 0, then the names of the
categories will be shorten to a length of |
... |
Further arguments passed to the underlying |
Details
The function summary.mipfp compute and returns a list of summary
statistics of the estimates (covariance, t-statistics, goodness-of-fit
statistics, associated degrees of freedom).
Value
The function summary.mipfp returns an object of class
summary.mipfp having the following components:
call |
A |
conv |
A Boolean indicating if the specified method converged to a
solution ( |
method |
The method used to generate estimates. |
df |
Degrees of freedom of the estimates. |
estimates |
Estimates generated by the selected method with standard deviations and associated t- and p-values. |
error.margins |
A list returning, for each margin, the absolute maximum deviation between the desired and generated margin. |
vcov |
A covariance matrix of the estimates (last index move fastest) computed
using the method specified in |
tab.gof |
A table containing the Log-likelihood (G2), Wald (W2) and Pearson chi-squared (X2) statistics with their associated p-values. |
stats.df |
Degrees of freedom for the |
dim.names |
Original dimension names of the estimated table. |
l.names |
The value of the parameter |
Note
When using print for printing the resulting mipfp object, you can
also have a look at the options of the method flat.
Author(s)
Johan Barthelemy.
Maintainer: Johan Barthelemy johan@uow.edu.au.
See Also
The estimation function Estimate.
The function coef.mipfp to extract the
estimates.
gof.estimates for the computation of the
G2, W2 and X2 statistics.
vcov.mipfp for the details of the covariance
computation.
Examples
# loading the data
data(spnamur, package = "mipfp")
# subsetting the data frame, keeping only the first 3 variables
spnamur.sub <- subset(spnamur, select = Household.type:Prof.status)
# true table
true.table <- table(spnamur.sub)
# extracting the margins
tgt.v1 <- apply(true.table, 1, sum)
tgt.v1.v2 <- apply(true.table, c(1,2), sum)
tgt.v2.v3 <- apply(true.table, c(2,3), sum)
tgt.list.dims <- list(1, c(1,2), c(2,3))
tgt.data <- list(tgt.v1, tgt.v1.v2, tgt.v2.v3)
# creating the seed, a 10 pct sample of spnamur
seed.df <- spnamur.sub[sample(nrow(spnamur), round(0.10*nrow(spnamur))), ]
seed.table <- table(seed.df)
# applying the different fitting methods
r.ipfp <- Estimate(seed=seed.table, target.list=tgt.list.dims,
target.data = tgt.data)
# printing the summary
print(summary(r.ipfp))