confint.mipfp {mipfp} | R Documentation |
Computing confidence intervals for the mipfp estimates
Description
This function computes the (asymptotic) Wald confidence intervals at a given
significance level for the estimates of an mipfp
object generated by
Estimate
.
Usage
## S3 method for class 'mipfp'
confint(object, parm, level = 0.95, prop = FALSE, ...)
Arguments
object |
The |
parm |
A specification of which estimates are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all estimates are considered. |
level |
The confidence level required. |
prop |
A boolean indicating if the results should be using counts ( |
... |
Further arguments passed to or from other methods (for instance
|
Details
The confidence interval of the estimates \hat{X}
, at significance
level \alpha
is given by
\hat{X} \pm z \left( 1-\frac{\alpha}{2} \right) *
\hat{\sigma}
where \hat{\sigma}
is the standart deviations of
\hat{X}
, z
and
\alpha = 1 - level
is the inverse of the cumulative
distribution function of the standard normal distribution.
Value
A matrix containing the upper and lower bounds for the estimated
counts/probabilities (depending on the value of the prop
argument).
Author(s)
Johan Barthelemy.
Maintainer: Johan Barthelemy johan@uow.edu.au.
References
Smithson, M. (2002). Confidence intervals. Sage Publications.
See Also
confint
for the default method to compute
confidence intervals for model parameters.
Estimate
, Ipfp
and
ObtainModelEstimates
to generate the
mipfp
objects for this function.
Examples
# true contingency (2-way) table
true.table <- array(c(43, 44, 9, 4), dim = c(2, 2))
# generation of sample, i.e. the seed to be updated
seed <- ceiling(true.table / 10)
# desired targets (margins)
target.row <- apply(true.table, 2, sum)
target.col <- apply(true.table, 1, sum)
# storing the margins in a list
target.data <- list(target.col, target.row)
# list of dimensions of each marginal constrain
target.list <- list(1, 2)
# using ipfp
res <- Estimate(seed, target.list, target.data)
# computing and printing the confidence intervals
print(confint(res))