RMultBinary {mipfp} | R Documentation |
Simulating a multivariate Bernoulli distribution
Description
This function generates a sample from a multinomial distribution of K
dependent binary (Bernoulli) variables
(X_1, X_2, ..., X_K)
defined by an array
(of 2^K cells) detailing the joint-probabilities.
Usage
RMultBinary(n = 1, mult.bin.dist, target.values = NULL)
Arguments
n |
Desired sample size. Default = 1. |
mult.bin.dist |
A list describing the multivariate binary distribution. It can be generated
by the |
target.values |
A list describing the possibles outcomes of each binary variable, for instance {1, 2}. Default = {0, 1}. |
Value
A list whose elements are detailed herehunder.
binary.sequences |
The generated |
possible.binary.sequences |
The possible binary sequences, i.e. the domain. |
chosen.random.index |
The index of the random draws in the domain. |
Author(s)
Thomas Suesse
Maintainer: Johan Barthelemy <johan@uow.edu.au>.
References
Lee, A.J. (1993). Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association. The American Statistician 47 (3): 209-215.
Qaqish, B. F., Zink, R. C., and Preisser, J. S. (2012). Orthogonalized residuals for estimation of marginally specified association parameters in multivariate binary data. Scandinavian Journal of Statistics 39, 515-527.
See Also
ObtainMultBinaryDist
for estimating the
joint-distribution required by this function.
Examples
# from Qaqish et al. (2012)
or <- matrix(c(Inf, 0.281, 2.214, 2.214,
0.281, Inf, 2.214, 2.214,
2.214, 2.214, Inf, 2.185,
2.214, 2.214, 2.185, Inf), nrow = 4, ncol = 4, byrow = TRUE)
rownames(or) <- colnames(or) <- c("Parent1", "Parent2", "Sibling1", "Sibling2")
# hypothetical marginal probabilities
p <- c(0.2, 0.4, 0.6, 0.8)
# estimating the joint-distribution
p.joint <- ObtainMultBinaryDist(odds = or, marg.probs = p)
# simulating 100,000 draws from the obtained joint-distribution
y.sim <- RMultBinary(n = 1e5, mult.bin.dist = p.joint)$binary.sequences
# checking results
cat('dim y.sim =', dim(y.sim)[1], 'x', dim(y.sim)[2], '\n')
cat('Estimated marginal probs from simulated data\n')
apply(y.sim,2,mean)
cat('True probabilities\n')
print(p)
cat('Estimated correlation from simulated data\n')
cor(y.sim)
cat('True correlation\n')
Odds2Corr(or,p)$corr
# generating binary outcomes with outcome different than 0, 1
RMultBinary(n = 10, mult.bin.dist = p.joint,
target.values = list(c("A", "B"), c(0, 1), c(1, 2), c(100, 101)))