Odds2PairProbs {mipfp} | R Documentation |
Converting odds ratio to pairwise probability
Description
For K
binary (Bernoulli) random variables
X_1
, ..., X_K
, this function transforms the odds ratios
measure of association O_{ij}
between every pair
(X_i, X_j)
to the pairwise probability
P(X_i = 1, X_j = 1)
, where O_{ij}
is
defined as
O_{ij} = \frac{P(X_i = 1, X_j = 1) * P(X_i = 0, X_j = 0)}
{P(X_i = 1, X_j = 0) * P(X_i = 0, X_j = 1)}.
Usage
Odds2PairProbs(odds, marg.probs)
Arguments
odds |
A |
marg.probs |
A vector with |
Value
A matrix of the same dimension as odds
containing the pairwise
probabilities
Note
If we denote P(X_i = 1, X_j = 1)
by
h_{ij}
, and P(X_i = 1)
by p_i
, then it
can be shown that
O_{ij} = \frac{h_{ij} * (1 - p_i - p_j + h_{ij})}{
((p_i - h_{ij}) * (p_j - h_{ij}))}
Author(s)
Thomas Suesse.
Maintainer: Johan Barthelemy johan@uow.edu.au.
References
Lee, A.J. (1993). Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association The American Statistician 47 (3): 209-215.
Qaqish, B. F., Zink, R. C., and Preisser, J. S. (2012). Orthogonalized residuals for estimation of marginally specified association parameters in multivariate binary data. Scandinavian Journal of Statistics 39, 515-527.
See Also
Corr2PairProbs
for converting the
correlation to pairwise probability.
Examples
# from Qaqish et al. (2012)
or <- matrix(c(Inf, 0.281, 2.214, 2.214,
0.281, Inf, 2.214, 2.214,
2.214, 2.214, Inf, 2.185,
2.214, 2.214, 2.185, Inf), nrow = 4, ncol = 4, byrow = TRUE)
rownames(or) <- colnames(or) <- c("Parent1", "Parent2", "Sibling1", "Sibling2")
# hypothetical marginal probabilities
p <- c(0.2, 0.4, 0.6, 0.8)
# getting the pairwise probabilities
pp <- Odds2PairProbs(odds = or, marg.probs = p)
print(pp)