GetConfInt {mipfp} | R Documentation |
Computing confidence intervals for the estimated counts and probabilities (deprecated)
Description
This function computes the (asymptotic) Wald confidence intervals at a given
significance level for the results generated by Ipfp
and ObtainModelEstimates
(provided
that their option compute.cov
was set to TRUE
).
Usage
GetConfInt(list.est, alpha = 0.05)
Arguments
list.est |
A list produced either by |
alpha |
Significance level of the confidence interval corresponding to the
100(1 - |
Details
The confidence interval of the estimates \hat{X}
, at significance
level \alpha
is given by
\hat{X} \pm z \left( 1-\frac{\alpha}{2} \right) *
\hat{\sigma}
where \hat{\sigma}
is the standart deviations of
\hat{X}
and z
is the inverse of the cumulative
distribution function of the standard normal distribution.
Value
A list of matrices containing the upper and lower bounds for the estimated counts and probabilities.
lower.x |
Lower bounds of the confidence interval for |
upper.x |
Upper bounds of the confidence interval for |
lower.p |
lower bounds of the confidence interval for |
upper.p |
upper bounds of the confidence interval for |
Warning
Note: this function is deprecated, instead use
confint.mipfp
.
Author(s)
Johan Barthelemy
Maintainer: Johan Barthelemy johan@uow.edu.au.
References
Smithson, M. (2002). Confidence intervals. Sage Publications.
See Also
Estimate
, Ipfp
and
ObtainModelEstimates
to generate the
inputs for this function.
The S3 method confint.mipfp
for object of
class mipfp
.
Examples
# true contingency (2-way) table
true.table <- array(c(43, 44, 9, 4), dim = c(2, 2))
# generation of sample, i.e. the seed to be updated
seed <- ceiling(true.table / 10)
# desired targets (margins)
target.row <- apply(true.table, 2, sum)
target.col <- apply(true.table, 1, sum)
# storing the margins in a list
target.data <- list(target.col, target.row)
# list of dimensions of each marginal constrain
target.list <- list(1, 2)
# calling the Ipfp function
res <- Ipfp(seed, target.list, target.data)
# addint the standart deviations to res (required by GetConfInt)
cov.res <- vcov(res, seed = seed, target.list = target.list,
target.data = target.data)
res$p.hat.se <- cov.res$p.hat.se
res$x.hat.se <- cov.res$x.hat.se
# computing and printing the confidence intervals
print(GetConfInt(res))