Corr2PairProbs {mipfp} | R Documentation |
Converting correlation to pairwise probability
Description
For K
binary (Bernoulli) random variables
X_1
, ..., X_K
, this function transforms the correlation
measure of association C_{ij}
between every pair
(X_i, X_j)
to the pairwise probability
P(X_i = 1, X_j = 1)
, where C_{ij}
is
defined as
C_{ij} = \frac{cov(X_i, X_j)}{\sqrt(var(X_i) * var(X_j))}.
Usage
Corr2PairProbs(corr, marg.probs)
Arguments
corr |
A |
marg.probs |
A vector with |
Value
A matrix of the same dimension as corr
containing the pairwise
probabilities
Author(s)
Thomas Suesse.
Maintainer: Johan Barthelemy johan@uow.edu.au.
References
Lee, A.J. (1993). Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association The American Statistician 47 (3): 209-215.
Qaqish, B. F., Zink, R. C., and Preisser, J. S. (2012). Orthogonalized residuals for estimation of marginally specified association parameters in multivariate binary data. Scandinavian Journal of Statistics 39, 515-527.
See Also
Odds2PairProbs
for converting odds ratio
to pairwise probability.
Examples
# correlation matrix from Qaqish et al. (2012)
corr <- matrix(c( 1.000, -0.215, 0.144, 0.107,
-0.215, 1.000, 0.184, 0.144,
0.144, 0.184, 1.000, 0.156,
0.107, 0.144, 0.156, 1.000),
nrow = 4, ncol = 4, byrow = TRUE)
rownames(corr) <- colnames(corr) <- c("Parent1", "Parent2", "Sibling1",
"Sibling2")
# hypothetical marginal probabilities
p <- c(0.2, 0.4, 0.6, 0.8)
# getting the pairwise probabilities
pp <- Corr2PairProbs(cor = corr, marg.probs = p)
print(pp)